No Arabic abstract
Motivated by the possible diphoton excess around $750~rm{GeV}$ observed by ATLAS and CMS at $13~rm{TeV}$, we consider a coloron model from $rm{SU}(3)_1 times rm{SU}(3)_2$ spontaneously breaking to the Standard Model $rm{SU}(3)_C$. A colored massive vector boson is resonantly produced by $q bar q $ in proton collision, followed by a colored scalar cascade decay. This process gives two photons and one jet in the final states. And the kinetic edge of the two photons can be an interpretation of the diphoton excess, while satisfying the dijet, $rm{t}bar{t}$, jet+photon resonance constraints. In this model, due to the large mass of vector resonance, the parton luminosity function ratio between $13~rm{TeV}$ and $8~rm{TeV}$ can be quite large. Therefore, the diphoton excess has not been observed at $8~rm{TeV}$ search. On the other hand, having all the new particles color-charged around $rm{TeV}$, this model predicts new signals at the LHC, which can be validated soon.
Pair production of colored particles is in general accompanied by production of QCD bound states (onia) slightly below the pair-production threshold. Bound state annihilation leads to resonant signals, which in some cases are easier to see than the decays of the pair-produced constituents. In a previous paper (arXiv:1204.1119) we estimated the bound state signals, at leading order and in the Coulomb approximation, for particles with various spins, color representations and electric charges, and used 7 TeV ATLAS and CMS resonance searches to set rough limits. Here we update our results to include 8 and 13 TeV data. We find that the recently reported diphoton excesses near 750 GeV could indeed be due to a bound state of this kind. A narrow resonance of the correct size could be obtained for a color-triplet scalar with electric charge -4/3 and mass near 375 GeV, if (as a recent lattice computation suggests) the wave function at the origin is somewhat larger than anticipated. Pair production of this particle could have evaded detection up to now. Other candidates may include a triplet scalar of charge 5/3, a triplet fermion of charge -4/3, and perhaps a sextet scalar of charge -2/3.
We investigate a possibility for explaining the recently announced 750,GeV diphoton excess by the ATLAS and the CMS experiments at the CERN LHC in a model with multiple doubly charged particles, which was originally suggested for explaining tiny neutrino masses through a three-loop effect in a natural way. The enhanced radiatively generated effective coupling of a new singlet scalar $S$ with diphoton with multiple charged particles in the loop enlarges the production rate of $S$ in $ppto S+X$ via photon fusion process and also the decay width $Gamma(Sto gammagamma)$ even without assuming a tree level production mechanism. We provide detailed analysis on the cases with or without allowing the mixing between $S$ and the standard model Higgs doublet.
We investigate the parameter space of a model which extends next to minimal supersymmetric standard model (NMSSM) with the vectorlike (VL) particles. We find that the $10+overline{10}$ model can explain the possible diphoton excess recently revealed by the ATLAS and CMS collaborations, although the predicted signal strength is a little smaller than the observed one.
We argue that the QCD axion can arise from many aligned axions with decay constants much smaller than the conventional axion window. If the typical decay constant is of {cal O}{(100)} GeV to 1 TeV, one or more of the axions or saxions may account for the recently found diphoton excess at sim 750 GeV. Our scenario predicts many axions and saxions coupled to gluons with decay constants of order the weak scale, and therefore many collider signatures by heavy axions and saxions will show up at different energy scales. In particular, if the inferred broad decay width is due to multiple axions or saxions, a non-trivial peak structure may become evident when more data is collected. We also discuss cosmological implications of the aligned QCD axion scenario. In the Appendix we give a possible UV completion and argue that the high quality of the Peccei-Quinn symmetry is naturally explained in our scenario.
We interpret the di-photon excess recently reported by the ATLAS and CMS collaborations as a new resonance arising from the sgoldstino scalar, which is the superpartner of the Goldstone mode of spontaneous supersymmetry breaking, the goldstino. The sgoldstino is produced at the LHC via gluon fusion and decays to photons, with interaction strengths proportional to the corresponding gaugino masses over the supersymmetry breaking scale. Fitting the excess, while evading bounds from searches in the di-jet, $Zgamma$, $ZZ$ and $WW$ final states, selects the supersymmetry breaking scale to be a few TeV, and particular ranges for the gaugino masses. The two real scalars, corresponding to the CP-even and CP-odd parts of the complex sgoldstino, both have narrow widths, but their masses can be split of the order 10-30 GeV by electroweak mixing corrections, which could account for the preference of a wider resonance width in the current low-statistics data. In the parameter space under consideration, tree-level $F$-term contributions to the Higgs mass arise, in addition to the standard $D$-term contribution proportional to the $Z$-boson mass, which can significantly enhance the tree level Higgs mass.