Do you want to publish a course? Click here

Little Strings, Quasi-topological Sigma Model on Loop Group, and Toroidal Lie Algebras

70   0   0.0 ( 0 )
 Added by Meer Ashwinkumar
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

We study the ground states and left-excited states of the A_{k-1} N=(2,0) little string theory. Via a theorem by Atiyah [1], these sectors can be captured by a supersymmetric nonlinear sigma model on CP^1 with target space the based loop group of SU(k). The ground states, described by L^2-cohomology classes, form modules over an affine Lie algebra, while the left-excited states, described by chiral differential operators, form modules over a toroidal Lie algebra. We also apply our results to analyze the 1/2 and 1/4 BPS sectors of the M5-brane worldvolume theory.



rate research

Read More

The quiver Yangian, an infinite-dimensional algebra introduced recently in arXiv:2003.08909, is the algebra underlying BPS state counting problems for toric Calabi-Yau three-folds. We introduce trigonometric and elliptic analogues of quiver Yangians, which we call toroidal quiver algebras and elliptic quiver algebras, respectively. We construct the representations of the shifted toroidal and elliptic algebras in terms of the statistical model of crystal melting. We also derive the algebras and their representations from equivariant localization of three-dimensional $mathcal{N}=2$ supersymmetric quiver gauge theories, and their dimensionally-reduced counterparts. The analysis of supersymmetric gauge theories suggests that there exist even richer classes of algebras associated with higher-genus Riemann surfaces and generalized cohomology theories.
In this paper, we study nullity-2 toroidal extended affine Lie algebras in the context of vertex algebras and their $phi$-coordinated modules. Among the main results, we introduce a variant of toroidal extended affine Lie algebras, associate vertex algebras to the variant Lie algebras, and establish a canonical connection between modules for toroidal extended affine Lie algebras and $phi$-coordinated modules for these vertex algebras. Furthermore, by employing some results of Billig, we obtain an explicit realization of irreducible modules for the variant Lie algebras.
We calculate the generating functions of BPS indices using their modular properties in Type II and M-theory compactifications on compact genus one fibered CY 3-folds with singular fibers and additional rational sections or just $N$-sections, in order to study string dualities in four and five dimensions as well as rigid limits in which gravity decouples. The generating functions are Jacobi-forms of $Gamma_1(N)$ with the complexified fiber volume as modular parameter. The string coupling $lambda$, or the $epsilon_pm$ parameters in the rigid limit, as well as the masses of charged hypermultiplets and non-Abelian gauge bosons are elliptic parameters. To understand this structure, we show that specific auto-equivalences act on the category of topological B-branes on these geometries and generate an action of $Gamma_1(N)$ on the stringy Kahler moduli space. We argue that these actions can always be expressed in terms of the generic Seidel-Thomas twist with respect to the 6-brane together with shifts of the B-field and are thus monodromies. This implies the elliptic transformation law that is satisfied by the generating functions. We use Higgs transitions in F-theory to extend the ansatz for the modular bootstrap to genus one fibrations with $N$-sections and boundary conditions fix the all genus generating functions for small base degrees completely. This allows us to study in depth a wide range of new, non-perturbative theories, which are Type II theory duals to the CHL $mathbb{Z}_N$ orbifolds of the heterotic string on $K3times T_2$. In particular, we compare the BPS degeneracies in the large base limit to the perturbative heterotic one-loop amplitude with $R_+^2 F_+^{2g-2}$ insertions for many new Type II geometries. In the rigid limit we can refine the ansatz and obtain the elliptic genus of superconformal theories in 5d.
We apply the modular approach to computing the topological string partition function on non-compact elliptically fibered Calabi-Yau 3-folds with higher Kodaira singularities in the fiber. The approach consists in making an ansatz for the partition function at given base degree, exact in all fiber classes to arbitrary order and to all genus, in terms of a rational function of weak Jacobi forms. Our results yield, at given base degree, the elliptic genus of the corresponding non-critical 6d string, and thus the associated BPS invariants of the 6d theory. The required elliptic indices are determined from the chiral anomaly 4-form of the 2d worldsheet theories, or the 8-form of the corresponding 6d theories, and completely fix the holomorphic anomaly equation constraining the partition function. We introduce subrings of the known rings of Weyl invariant Jacobi forms which are adapted to the additional symmetries of the partition function, making its computation feasible to low base wrapping number. In contradistinction to the case of simpler singularities, generic vanishing conditions on BPS numbers are no longer sufficient to fix the modular ansatz at arbitrary base wrapping degree. We show that to low degree, imposing exact vanishing conditions does suffice, and conjecture this to be the case generally.
We make a proposal for calculating refined Gopakumar-Vafa numbers (GVN) on elliptically fibered Calabi-Yau 3-folds based on refined holomorphic anomaly equations. The key examples are smooth elliptic fibrations over (almost) Fano surfaces. We include a detailed review of existing mathematical methods towards defining and calculating the (unrefined) Gopakumar-Vafa invariants (GVI) and the GVNs on compact Calabi-Yau 3-folds using moduli of stable sheaves, in a language that should be accessible to physicists. In particular, we discuss the dependence of the GVNs on the complex structure moduli and on the choice of an orientation. We calculate the GVNs in many instances and compare the B-model predictions with the geometric calculations. We also derive the modular anomaly equations from the holomorphic anomaly equations by analyzing the quasi-modular properties of the propagators. We speculate about the physical relevance of the mathematical choices that can be made for the orientation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا