No Arabic abstract
Using the Double Chooz detector, designed to measure the neutrino mixing angle $theta_{13}$, the products of $mu^-$ capture on $^{12}$C, $^{13}$C, $^{14}$N and $^{16}$O have been measured. Over a period of 489.5 days, $2.3times10^6$ stopping cosmic $mu^-$ have been collected, of which $1.8times10^5$ captured on carbon, nitrogen, or oxygen nuclei in the inner detector scintillator or acrylic vessels. The resulting isotopes were tagged using prompt neutron emission (when applicable), the subsequent beta decays, and, in some cases, $beta$-delayed neutrons. The most precise measurement of the rate of $^{12}mathrm C(mu^-, u)^{12}mathrm B$ to date is reported: $6.57^{+0.11}_{-0.21}times10^{3},mathrm s^{-1}$, or $(17.35^{+0.35}_{-0.59})%$ of nuclear captures. By tagging excited states emitting gammas, the ground state transition rate to $^{12}$B has been determined to be $5.68^{+0.14}_{-0.23}times10^3,mathrm s^{-1}$. The heretofore unobserved reactions $^{12}mathrm C(mu^-, ualpha)^{8}mathrm{Li}$, $^{13}mathrm C(mu^-, umathrm nalpha)^{8}mathrm{Li}$, and $^{13}mathrm C(mu^-, umathrm n)^{12}mathrm B$ are measured. Further, a population of $beta$n decays following stopping muons is identified with $5.5sigma$ significance. Statistics limit our ability to identify these decays definitively. Assuming negligible production of $^{8}$He, the reaction $^{13}mathrm C(mu^-, ualpha)^{9}mathrm{Li}$ is found to be present at the $2.7sigma$ level. Limits are set on a variety of other processes.
Muon capture isotope production (MuCIP) using negative ordinary muon capture reactions (OMC) is used to efficiently produce various kinds of nuclear isotopes for both fundamental and applied science studies. The large capture probability of muon into a nucleus, together with the high intensity muon beam, make it possible to produce nuclear isotopes in the order of 10^{9-10} per second depending on the muon beam intensity. Radioactive isotopes (RIs) produced by MuCIP are complementary to those produced by photon and neutron capture reactions and are used for various science and technology applications. MuCIP on ^{Nat}Mo by using the RCNP MuSIC muon beam is presented to demonstrate the feasibility of MuCIP. Nuclear isotopes produced by MuCIP are evaluated by using a pre-equilibrium (PEQ) and equilibrium (EQ) proton neutron emission model. Radioactive $^{99}$Mo isotopes and the metastable ^{99m}Tc isotopes, which are used extensively in medical science, are produced by MuCIP on ^{Nat}Mo and ^{100}Mo.
Double electron capture is a rare nuclear decay process in which two orbital electrons are captured simultaneously in the same nucleus. Measurement of its two-neutrino mode would provide a new reference for the calculation of nuclear matrix elements whereas observation of its neutrinoless mode would demonstrate lepton number violation. A search for two-neutrino double electron capture on $^{124}$Xe is performed using 165.9 days of data collected with the XMASS-I liquid xenon detector. No significant excess above background was observed and we set a lower limit on the half-life as $4.7 times 10^{21}$ years at 90% confidence level. The obtained limit has ruled out parts of some theoretical expectations. We obtain a lower limit on the $^{126}$Xe two-neutrino double electron capture half-life of $4.3 times 10^{21}$ years at 90% confidence level as well.
We conducted an improved search for the simultaneous capture of two $K$-shell electrons on the $^{124}$Xe and $^{126}$Xe nuclei with emission of two neutrinos using 800.0 days of data from the XMASS-I detector. A novel method to discriminate $gamma$-ray/$X$-ray or double electron capture signals from $beta$-ray background using scintillation time profiles was developed for this search. No significant signal was found when fitting the observed energy spectra with the expected signal and background. Therefore, we set the most stringent lower limits on the half-lives at $2.1 times 10^{22}$ and $1.9 times 10^{22}$ years for $^{124}$Xe and $^{126}$Xe, respectively, with 90% confidence level. These limits improve upon previously reported values by a factor of 4.5.
We describe a muon track reconstruction algorithm for the reactor anti-neutrino experiment Double Chooz. The Double Chooz detector consists of two optically isolated volumes of liquid scintillator viewed by PMTs, and an Outer Veto above these made of crossed scintillator strips. Muons are reconstructed by their Outer Veto hit positions along with timing information from the other two detector volumes. All muons are fit under the hypothesis that they are through-going and ultrarelativistic. If the energy depositions suggest that the muon may have stopped, the reconstruction fits also for this hypothesis and chooses between the two via the relative goodness-of-fit. In the ideal case of a through-going muon intersecting the center of the detector, the resolution is ~40 mm in each transverse dimension. High quality muon reconstruction is an important tool for reducing the impact of the cosmogenic isotope background in Double Chooz.
The use of argon as a detection and shielding medium for neutrino and dark matter experiments has made the precise knowledge of the cross section for neutron capture on argon an important design and operational parameter. Since previous measurements were averaged over thermal spectra and have significant disagreements, a differential measurement has been performed using a Time-Of-Flight neutron beam and a $sim$4$pi$ gamma spectrometer. A fit to the differential cross section from $0.015-0.15$,eV, assuming a $1/v$ energy dependence, yields $sigma^{2200} = 673 pm 26 text{ (stat.)} pm 59 text{ (sys.)}$,mb.