No Arabic abstract
The reports collected in these proceedings have been presented in the third French-Ukrainian workshop on the instrumentation developments for high-energy physics held at LAL, Orsay on October 15-16. The workshop was conducted in the scope of the IDEATE International Associated Laboratory (LIA). Joint developments between French and Ukrainian laboratories and universities as well as new proposals have been discussed. The main topics of the papers presented in the Proceedings are developments for accelerator and beam monitoring, detector developments, joint developments for large-scale high-energy and astroparticle physics projects, medical applications.
The Daya Bay experiment measures sin^2 2{theta}_13 using functionally identical antineutrino detectors located at distances of 300 to 2000 meters from the Daya Bay nuclear power complex. Each detector consists of three nested fluid volumes surrounded by photomultiplier tubes. These volumes are coupled to overflow tanks on top of the detector to allow for thermal expansion of the liquid. Antineutrinos are detected through the inverse beta decay reaction on the proton-rich scintillator target. A precise and continuous measurement of the detectors central target mass is achieved by monitoring the the fluid level in the overflow tanks with cameras and ultrasonic and capacitive sensors. In addition, the monitoring system records detector temperature and levelness at multiple positions. This monitoring information allows the precise determination of the detectors effective number of target protons during data taking. We present the design, calibration, installation and in-situ tests of the Daya Bay real-time antineutrino detector monitoring sensors and readout electronics.
The mini-proceedings of the MesonNet 2013 International Workshop held in Prague from June 17th to 19th, 2013, are presented. MesonNet is a research network within EU HadronPhysics3 project (1/2012 -- 12/2014). The web page of the conference, which contains all talks, can be found at http://ipnp.mff.cuni.cz/mesonnet13
The KL2016 Workshop is following the Letter of Intent LoI12-15-001 Physics Opportunities with Secondary KL beam at JLab submitted to PAC43 with the main focus on the physics of excited hyperons produced by the Kaon beam on unpolarized and polarized targets with GlueX setup in Hall D. Such studies will broaden a physics program of hadron spectroscopy extending it to the strange sector. The Workshop was organized to get a feedback from the community to strengthen physics motivation of the LoI and prepare a full proposal. Further details about the Workshop can be found on the web page of the conference: http://www.jlab.org/conferences/kl2016/index.html .
The uncertainty in the initial neutrino flux is the main limitation for a precise determination of the absolute neutrino cross section. The ERC funded ENUBET project (2016-2021) is studying a facility based on a narrow band beam to produce an intense source of electron neutrinos with a ten-fold improvement in accuracy. Since March 2019 ENUBET is also a Neutrino Platform experiment at CERN: NP06/ENUBET. A key element of the project is the instrumentation of the decay tunnel to monitor large angle positrons produced together with $ u_e$ in the three body decays of kaons ($K_{e3}$) and to discriminate them from neutral and charged pions. The need for an efficient and high purity e/$pi$ separation over a length of several meters, and the requirements for fast response and radiation hardness imposed by the harsh beam environment, suggested the implementation of a longitudinally segmented Fe/scintillator calorimeter with a readout based on WLS fibers and SiPM detectors. An extensive experimental program through several test beam campaigns at the CERN-PS T9 beam line has been pursued on calorimeter prototypes, both with a shashlik and a lateral readout configuration. The latter, in which fibers collect the light from the side of the scintillator tiles, allows to place the light sensors away from the core of the calorimeter, thus reducing possible irradiation damages with respect to the shashlik design. This contribution will present the achievements of the prototyping activities carried out, together with irradiation tests made on the Silicon Photo-Multipliers. The results achieved so far pin down the technology of choice for the construction of the 3 m long demonstrator that will take data in 2021.
The mini-proceedings of the Light Meson Dynamics Workshop held in Mainz from February 10th to 12th, 2014, are presented. The web page of the conference, which contains all talks, can be found at https://indico.cern.ch/event/287442/overview .