The block-ZXZ synthesis of an arbitrary quantum circuit


Abstract in English

Given an arbitrary $2^w times 2^w$ unitary matrix $U$, a powerful matrix decomposition can be applied, leading to four different syntheses of a $w$-qubit quantum circuit performing the unitary transformation. The demonstration is based on a recent theorem by Fuhr and Rzeszotnik, generalizing the scaling of single-bit unitary gates ($w=1$) to gates with arbitrary value of~$w$. The synthesized circuit consists of controlled 1-qubit gates, such as NEGATOR gates and PHASOR gates. Interestingly, the approach reduces to a known synthesis method for classical logic circuits consisting of controlled NOT gates, in the case that $U$ is a permutation matrix.

Download