Do you want to publish a course? Click here

The block-ZXZ synthesis of an arbitrary quantum circuit

94   0   0.0 ( 0 )
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Given an arbitrary $2^w times 2^w$ unitary matrix $U$, a powerful matrix decomposition can be applied, leading to four different syntheses of a $w$-qubit quantum circuit performing the unitary transformation. The demonstration is based on a recent theorem by Fuhr and Rzeszotnik, generalizing the scaling of single-bit unitary gates ($w=1$) to gates with arbitrary value of~$w$. The synthesized circuit consists of controlled 1-qubit gates, such as NEGATOR gates and PHASOR gates. Interestingly, the approach reduces to a known synthesis method for classical logic circuits consisting of controlled NOT gates, in the case that $U$ is a permutation matrix.



rate research

Read More

It is commonly accepted that a deviation of the Wigner quasiprobability distribution of a quantum state from a proper statistical distribution signifies its nonclassicality. Following this ideology, we introduce the global indicator $mathcal{Q}_N$ for quantification of classicality-quantumness correspondence in the form of the functional on the orbit space $mathcal{O}[mathfrak{P}_N]$ of the $SU(N)$ group adjoint action on the state space $mathfrak{P}_N$ of an $N$-dimensional quantum system. The indicator $mathcal{Q}_{N}$ is defined as a relative volume of a subspace $mathcal{O}[mathfrak{P}^{(+)}_N] subset mathcal{O}[mathfrak{P}_N],,$ where the Wigner quasiprobability distribution is positive. An algebraic structure of $mathcal{O}[mathfrak{P}^{(+)}_N]$ is revealed and exemplified by a single qubit $(N=2)$ and single qutrit $(N=3)$. For the Hilbert-Schmidt ensemble of qutrits the dependence of the global indicator on the moduli parameter of the Wigner quasiprobability distribution has been found.
Quantum circuit synthesis is the process in which an arbitrary unitary operation is decomposed into a sequence of gates from a universal set, typically one which a quantum computer can implement both efficiently and fault-tolerantly. As physical implementations of quantum computers improve, the need is growing for tools which can effectively synthesize components of the circuits and algorithms they will run. Existing algorithms for exact, multi-qubit circuit synthesis scale exponentially in the number of qubits and circuit depth, leaving synthesis intractable for circuits on more than a handful of qubits. Even modest improvements in circuit synthesis procedures may lead to significant advances, pushing forward the boundaries of not only the size of solvable circuit synthesis problems, but also in what can be realized physically as a result of having more efficient circuits. We present a method for quantum circuit synthesis using deterministic walks. Also termed pseudorandom walks, these are walks in which once a starting point is chosen, its path is completely determined. We apply our method to construct a parallel framework for circuit synthesis, and implement one such version performing optimal $T$-count synthesis over the Clifford+$T$ gate set. We use our software to present examples where parallelization offers a significant speedup on the runtime, as well as directly confirm that the 4-qubit 1-bit full adder has optimal $T$-count 7 and $T$-depth 3.
We propose a measure of entanglement that can be computed for any pure state of an $M$-qubit system. The entanglement measure has the form of a distance that we derive from an adapted application of the Fubini-Study metric. This measure is invariant under local unitary transformations and defined as trace of a suitable metric that we derive, the entanglement metric $tilde{g}$. Furthermore, the analysis of the eigenvalues of $tilde{g}$ gives information about the robustness of entanglement.
205 - Stefano Pirandola 2019
Secure quantum conferencing refers to a protocol where a number of trusted users generate exactly the same secret key to confidentially broadcast private messages. By a modification of the techniques first introduced in [Pirandola, arXiv:1601.00966], we derive a single-letter upper bound for the maximal rates of secure conferencing in a quantum network with arbitrary topology, where the users are allowed to perform the most powerful local operations assisted by two-way classical communications, and the quantum systems are routed according to the most efficient multipath flooding strategies. More precisely, our analysis allows us to bound the ultimate rates that are achievable by single-message multiple-multicast protocols, where N senders distribute N independent secret keys, and each key is to be shared with an ensemble of M receivers.
67 - Rolando D. Somma 2018
We present a method that outputs a sequence of simple unitary operations to prepare a given quantum state that is a generalized coherent state. Our method takes as inputs the expectation values of some relevant observables on the state to be prepared. Such expectation values can be estimated by performing projective measurements on $O(M^3 log(M/delta)/epsilon^2)$ copies of the state, where $M$ is the dimension of an associated Lie algebra, $epsilon$ is a precision parameter, and $1-delta$ is the required confidence level. The method can be implemented on a classical computer and runs in time $O(M^4 log(M/epsilon))$. It provides $O(M log(M/epsilon))$ simple unitaries that form the sequence. The number of all computational resources is then polynomial in $M$, making the whole procedure very efficient in those cases where $M$ is significantly smaller than the Hilbert space dimension. When the algebra of relevant observables is determined by some Pauli matrices, each simple unitary may be easily decomposed into two-qubit gates. We discuss applications to quantum state tomography and classical simulations of quantum circuits.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا