No Arabic abstract
Our world is filled with both beautiful and brainy people, but how often does a Nobel Prize winner also wins a beauty pageant? Let us assume that someone who is both very beautiful and very smart is more rare than what we would expect from the combination of the number of beautiful and brainy people. Of course there will still always be some individuals that defy this stereotype; these beautiful brainy people are exactly the class of anomaly we focus on in this paper. They do not posses intrinsically rare qualities, it is the unexpected combination of factors that makes them stand out. In this paper we define the above described class of anomaly and propose a method to quickly identify them in transaction data. Further, as we take a pattern set based approach, our method readily explains why a transaction is anomalous. The effectiveness of our method is thoroughly verified with a wide range of experiments on both real world and synthetic data.
The data deluge comes with high demands for data labeling. Crowdsourcing (or, more generally, ensemble learning) techniques aim to produce accurate labels via integrating noisy, non-expert labeling from annotators. The classic Dawid-Skene estimator and its accompanying expectation maximization (EM) algorithm have been widely used, but the theoretical properties are not fully understood. Tensor methods were proposed to guarantee identification of the Dawid-Skene model, but the sample complexity is a hurdle for applying such approaches---since the tensor methods hinge on the availability of third-order statistics that are hard to reliably estimate given limited data. In this paper, we propose a framework using pairwise co-occurrences of the annotator responses, which naturally admits lower sample complexity. We show that the approach can identify the Dawid-Skene model under realistic conditions. We propose an algebraic algorithm reminiscent of convex geometry-based structured matrix factorization to solve the model identification problem efficiently, and an identifiability-enhanced algorithm for handling more challenging and critical scenarios. Experiments show that the proposed algorithms outperform the state-of-art algorithms under a variety of scenarios.
We propose to learn word embeddings from visual co-occurrences. Two words co-occur visually if both words apply to the same image or image region. Specifically, we extract four types of visual co-occurrences between object and attribute words from large-scale, textually-annotated visual databases like VisualGenome and ImageNet. We then train a multi-task log-bilinear model that compactly encodes word meanings represented by each co-occurrence type into a single visual word-vector. Through unsupervised clustering, supervised partitioning, and a zero-shot-like generalization analysis we show that our word embeddings complement text-only embeddings like GloVe by better representing similarities and differences between visual concepts that are difficult to obtain from text corpora alone. We further evaluate our embeddings on five downstream applications, four of which are vision-language tasks. Augmenting GloVe with our embeddings yields gains on all tasks. We also find that random embeddings perform comparably to learned embeddings on all supervised vision-language tasks, contrary to conventional wisdom.
Representing a word by its co-occurrences with other words in context is an effective way to capture the meaning of the word. However, the theory behind remains a challenge. In this work, taking the example of a word classification task, we give a theoretical analysis of the approaches that represent a word X by a function f(P(C|X)), where C is a context feature, P(C|X) is the conditional probability estimated from a text corpus, and the function f maps the co-occurrence measure to a prediction score. We investigate the impact of context feature C and the function f. We also explain the reasons why using the co-occurrences with multiple context features may be better than just using a single one. In addition, some of the results shed light on the theory of feature learning and machine learning in general.
In this paper, we study the pattern occurrence in $k$-ary words. We prove an explicit upper bound on the number of $k$-ary words avoiding any given pattern using a random walk argument. Additionally, we reproduce several already known results and establish a simple connection among pattern occurrences in permutations and $k$-ary words. A simple consequence of this connection is that Wilf-equivalence of two patterns in words implies their Wilf-equivalence in permutations.
NLP tasks are often limited by scarcity of manually annotated data. In social media sentiment analysis and related tasks, researchers have therefore used binarized emoticons and specific hashtags as forms of distant supervision. Our paper shows that by extending the distant supervision to a more diverse set of noisy labels, the models can learn richer representations. Through emoji prediction on a dataset of 1246 million tweets containing one of 64 common emojis we obtain state-of-the-art performance on 8 benchmark datasets within sentiment, emotion and sarcasm detection using a single pretrained model. Our analyses confirm that the diversity of our emotional labels yield a performance improvement over previous distant supervision approaches.