Do you want to publish a course? Click here

Strange meson production in Al+Al collisions at 1.9A GeV

51   0   0.0 ( 0 )
 Added by Krzysztof Piasecki
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

The production of K$^+$, K$^-$ and $varphi$(1020) mesons is studied in Al+Al collisions at a beam energy of 1.9A GeV which is close or below the production threshold in NN reactions. Inverse slopes, anisotropy parameters, and total emission yields of K$^{pm}$ mesons are obtained. A comparison of the ratio of kinetic energy distributions of K$^-$ and K$^+$ mesons to the HSD transport model calculations suggests that the inclusion of the in-medium modifications of kaon properties is necessary to reproduce the ratio. The inverse slope and total yield of $phi$ mesons are deduced. The contribution to K$^-$ production from $phi$ meson decays is found to be [17 $pm$ 3 (stat) $^{+2}_{-7}$ (syst)] %. The results are in line with previous K$^{pm}$ and $phi$ data obtained for different colliding systems at similar incident beam energies.



rate research

Read More

We analysed the $phi$ meson production in central Ni+Ni collisions at the beam kinetic energy of 1.93A GeV with the FOPI spectrometer and found the production probability per event of $[8.6 ~pm~ 1.6 ~(text{stat}) pm 1.5 ~(text{syst})] times 10^{-4}$. This new data point allows for the first time to inspect the centrality dependence of the subthreshold $phi$ meson production in heavy-ion collisions. The rise of $phi$ meson multiplicity per event with mean number of participants can be parameterized by the power function with exponent $alpha = 1.8 pm 0.6$. The ratio of $phi$ to $text{K}^-$ production yields seems not to depend within the experimental uncertainties on the collision centrality, and the average of measured values was found to be $0.36 pm 0.05$.
We present strange particle spectra and yields measured at mid-rapidity in $sqrt{text{s}}=200$ GeV proton-proton ($p+p$) collisions at RHIC. We find that the previously observed universal transverse mass ($mathrm{m_{T}}equivsqrt{mathrm{p_{T}}^{2}+mathrm{m}^{2}}$) scaling of hadron production in $p+p$ collisions seems to break down at higher mt and that there is a difference in the shape of the mt spectrum between baryons and mesons. We observe mid-rapidity anti-baryon to baryon ratios near unity for $Lambda$ and $Xi$ baryons and no dependence of the ratio on transverse momentum, indicating that our data do not yet reach the quark-jet dominated region. We show the dependence of the mean transverse momentum (mpt) on measured charged particle multiplicity and on particle mass and infer that these trends are consistent with gluon-jet dominated particle production. The data are compared to previous measurements from CERN-SPS, ISR and FNAL experiments and to Leading Order (LO) and Next to Leading order (NLO) string fragmentation model predictions. We infer from these comparisons that the spectral shapes and particle yields from $p+p$ collisions at RHIC energies have large contributions from gluon jets rather than quark jets.
The PHENIX experiment has measured $phi$ meson production in $d$$+$Au collisions at $sqrt{s_{_{NN}}}=200$ GeV using the dimuon and dielectron decay channels. The $phi$ meson is measured in the forward (backward) $d$-going (Au-going) direction, $1.2<y<2.2$ ($-2.2<y<-1.2$) in the transverse-momentum ($p_T$) range from 1--7 GeV/$c$, and at midrapidity $|y|<0.35$ in the $p_T$ range below 7 GeV/$c$. The $phi$ meson invariant yields and nuclear-modification factors as a function of $p_T$, rapidity, and centrality are reported. An enhancement of $phi$ meson production is observed in the Au-going direction, while suppression is seen in the $d$-going direction, and no modification is observed at midrapidity relative to the yield in $p$$+$$p$ collisions scaled by the number of binary collisions. Similar behavior was previously observed for inclusive charged hadrons and open heavy flavor indicating similar cold-nuclear-matter effects.
54 - HARP Collaboration 2005
A precision measurement of the double-differential production cross-section, ${{d^2 sigma^{pi^+}}}/{{d p dOmega}}$, for pions of positive charge, performed in the HARP experiment is presented. The incident particles are protons of 12.9 GeV/c momentum impinging on an aluminium target of 5% nuclear interaction length. The measurement of this cross-section has a direct application to the calculation of the neutrino flux of the K2K experiment. After cuts, 210000 secondary tracks reconstructed in the forward spectrometer were used in this analysis. The results are given for secondaries within a momentum range from 0.75 GeV/c to 6.5 GeV/c, and within an angular range from 30 mrad to 210 mrad. The absolute normalization was performed using prescaled beam triggers counting protons on target. The overall scale of the cross-section is known to better than 6%, while the average point-to-point error is 8.2%.
This paper presents several measurements of total production cross sections and total inelastic cross sections for the following reactions: $pi^{+}$+C, $pi^{+}$+Al, $K^{+}$+C, $K^{+}$+Al at 60 GeV/c, $pi^{+}$+C and $pi^{+}$+Al at 31 GeV/c . The measurements were made using the NA61/SHINE spectrometer at the CERN SPS. Comparisons with previous measurements are given and good agreement is seen. These interaction cross sections measurements are a key ingredient for neutrino flux prediction from the reinteractions of secondary hadrons in current and future accelerator-based long-baseline neutrino experiments.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا