No Arabic abstract
The coexistence and competition between superconductivity and electronic orders, such as spin or charge density waves, have been a central issue in high transition-temperature (${T_{rm c}}$) superconductors. Unlike other iron-based superconductors, FeSe exhibits nematic ordering without magnetism whose relationship with its superconductivity remains unclear. More importantly, a pressure-induced fourfold increase of ${T_{rm c}}$ has been reported, which poses a profound mystery. Here we report high-pressure magnetotransport measurements in FeSe up to $sim9$ GPa, which uncover a hidden magnetic dome superseding the nematic order. Above ${sim6}$ GPa the sudden enhancement of superconductivity (${T_{rm c}le38.3}$ K) accompanies a suppression of magnetic order, demonstrating their competing nature with very similar energy scales. Above the magnetic dome we find anomalous transport properties suggesting a possible pseudogap formation, whereas linear-in-temperature resistivity is observed above the high-${T_{rm c}}$ phase. The obtained phase diagram highlights unique features among iron-based superconductors, but bears some resemblance to that of high-${T_{rm c}}$ cuprates.
Superconductivity in the cuprate superconductors and the Fe-based superconductors is realized by doping the parent compound with charge carriers, or by application of high pressure, to suppress the antiferromagnetic state. Such a rich phase diagram is important in understanding superconductivity mechanism and other physics in the Cu- and Fe-based high temperature superconductors. In this paper, we report a phase diagram in the single-layer FeSe films grown on SrTiO3 substrate by an annealing procedure to tune the charge carrier concentration over a wide range. A dramatic change of the band structure and Fermi surface is observed, with two distinct phases identified that are competing during the annealing process. Superconductivity with a record high transition temperature (Tc) at ~65 K is realized by optimizing the annealing process. The wide tunability of the system across different phases, and its high-Tc, make the single-layer FeSe film ideal not only to investigate the superconductivity physics and mechanism, but also to study novel quantum phenomena and for potential applications.
Pressure-stabilized hydrides are a new rapidly growing class of high-temperature superconductors which is believed to be described within the conventional phonon-mediated mechanism of coupling. Here we report the synthesis of yttrium hexahydride Im3m-YH$_6$ that demonstrates the superconducting transition with T$_c$ = 224 K at 166 GPa, much lower than the theoretically predicted (>270 K). The measured upper critical magnetic field B$_c$$_2$(0) of YH$_6$ was found to be 116-158 T, which is 2-2.5 times larger than the calculated value. A pronounced shift of T$_c$ in yttrium deuteride YD$_6$ with the isotope coefficient 0.4 supports the phonon-assisted superconductivity. Current-voltage measurements showed that the critical current I$_c$ and its density J$_c$ may exceed 1.75 A and 3500 A/mm$^2$ at 0 K, respectively, which is comparable with the parameters of commercial superconductors, such as NbTi and YBCO. The superconducting density functional theory (SCDFT) and anharmonic calculations suggest unusually large impact of the Coulomb repulsion in this compound. The results indicate notable departures of the superconducting properties of the discovered YH$_6$ from the conventional Migdal-Eliashberg and Bardeen-Cooper-Schrieffer theories.
It is well known that superconductivity in Fe-based materials is favoured under tetragonal symmetry, whereas competing orders such as spin-density-wave (SDW) and nematic orders emerge or are reinforced upon breaking the fourfold (C4) symmetry. Accordingly, suppression of orthorhombicity below the superconducting transition temperature (Tc) is found in underdoped compounds. Epitaxial film growth on selected substrates allows the design of crystal specific lattice distortions. Here we show that despite the breakdown of the C4 symmetry induced by a 5% difference in the lattice parameters, monolayers of FeSe grown by molecular beam epitaxy (MBE) on the (110) surface of SrTiO3 (STO) substrates [FeSe/STO(110)] exhibit a large nearly isotropic superconducting (SC) gap of 16 meV closing around 60 K. Our results on this new interfacial material, similar to those obtained previously on FeSe/STO(001), contradict the common belief that the C4 symmetry is essential for reaching high Tcs in Fe-based superconductors.
Recently, C. M. Pepin textit{et al.} [Science textbf{357}, 382 (2017)] reported the formation of several new iron polyhydrides FeH$_x$ at pressures in the megabar range, and spotted FeH$_5$, which forms above 130 GPa, as a potential high-tc superconductor, because of an alleged layer of dense metallic hydrogen. Shortly after, two studies by A.~Majumdar textit{et al.} [Phys. Rev. B textbf{96}, 201107 (2017)] and A.~G.~Kvashnin textit{et al.} [J. Phys. Chem. C textbf{122}, 4731 (2018)] based on {em ab initio} Migdal-Eliashberg theory seemed to independently confirm such a conjecture. We conversely find, on the same theoretical-numerical basis, that neither FeH$_5$ nor its precursor, FeH$_3$, shows any conventional superconductivity and explain why this is the case. We also show that superconductivity may be attained by transition-metal polyhydrides in the FeH$_3$ structure type by adding more electrons to partially fill one of the Fe--H hybrid bands (as, e.g., in NiH$_3$). Critical temperatures, however, will remain low because the $d$--metal bonding, and not the metallic hydrogen, dominates the behavior of electrons and phonons involved in the superconducting pairing in these compounds.
The pressure induced superconductivity and structural evolution for Bi2Se3 single crystal have been studied. The emergence of superconductivity with onset transition temperature (Tc) about 4.4K is observed around 12GPa. Tc increases rapidly to the highest 8.5K at 16GPa, decreases to 6.5K at 21GPa, then keep almost constant. It is found that Tc versus pressure is closely related to the carrier density which increases by more than two orders of magnitude from 2GPa to 23GPa. High pressure synchrotron radiation measurements reveal structure transitions occur around 12GPa, 20GPa, and above 29GPa, respectively. A phase diagram of superconductivity versus pressure is obtained.