No Arabic abstract
The quark susceptibility $chi_q$ at zero and finite quark chemical potential provides a critical benchmark to determine the quark-gluon-plasma (QGP) degrees of freedom in relation to the results from lattice QCD (lQCD) in addition to the equation of state and transport coefficients. Here we extend the familiar dynamical-quasiparticle model (DQPM) to partonic propagators that explicitly depend on the three-momentum with respect to the partonic medium at rest in order to match perturbative QCD (pQCD) at high momenta. Within the extended dynamical-quasi-particle model (DQPM$^*$) we reproduce simultaneously the lQCD results for the quark number density and susceptibility and the QGP pressure at zero and finite (but small) chemical potential $mu_q$. The shear viscosity $eta$ and the electric conductivity $sigma_e$ from the extended quasiparticle model (DQPM$^*$) also turn out in close agreement with lattice results for $mu_q$ =0. The DQPM$^*$, furthermore, allows to evaluate the momentum $p$, temperature $T$ and chemical potential $mu_q$ dependencies of the partonic degrees of freedom also for larger $mu_q$ which are mandatory for transport studies of heavy-ion collisions in the regime 5 GeV $< sqrt{s_{NN}} <$ 10 GeV.
We study the temperature-dependence of the shear viscosity to entropy density ratio in pure Yang-Mills theory and in QCD with light and strange quarks within kinetic theory in the relaxation time approximation. As effective degrees of freedom in a deconfined phase we consider quasiparticle excitations with quark and gluon quantum numbers and dispersion relations that depend explicitly on the temperature. The quasiparticle relaxation times are obtained by computing the microscopic two-body scattering amplitudes for the elementary scatterings among the quasiparticles. For pure Yang-Mills theory we show that the shear viscosity to entropy density ratio exhibits a characteristic non-monotonicity with a minimum at the first-order phase transition. In the presence of dynamical quarks the ratio smoothens while still exhibiting a minimum near confinement. Furthermore, there is a significant increase of the shear viscosity to entropy density ratio in QCD resulting from the quark contributions. This observation differs from previously reported estimates based on functional methods but is in line with perturbative QCD expectations at higher temperatures.
We give the alternative formulation of quasiparticle model of quark gluon plasma with medium dependent dispersion relation. The model is thermodynamically consistent provided the medium dependent contribution to the energy density is taken in to account. We establish the connection of our model with other variants of quasiparticle models which are thermodynamically consistent. We test the model by comparing the equation of state with the lattice gauge theory simulations of SU(3) pure gluodynamics .
The region of large net-baryon densities in the QCD phase diagram is expected to exhibit a first-order phase transition. Experimentally, its study will be one of the primaryobjectives for the upcoming FAIR accelerator. We model the transition between quarks and hadrons in a heavy-ion collision using a fluid which is coupled to the explicit dynamics of the chiral order parameter and a dilaton field. This allows us to investigate signals stemming from the nonequilibrium evolution during the expansion of the hot plasma. Special emphasis is put on an event-by-event analysis of baryon number fluctuations which have long since been claimed to be sensitive to a critical point.
We calculate the matrix elements of the color-spin interaction for all possible multi-quark states of tribaryons in flavor SU(3) broken case. For that purpose, we construct the flavor$otimes$color$otimes$spin wave functions of the tribaryons, which are taken to be antisymmetric to satisfy the Pauli exclusion principle. Furthermore, we analyze the diquark structure of the tribaryon configurations using the symmetric and antisymmetric basis set of flavor, color and spin states.
Charmed dibaryon states with the spin-parity $J^{pi}=0^+$, $1^+$, and $2^+$are predicted for the two-body $Y_cN$ ($=Lambda_c$, $Sigma_c$, or $Sigma^*_c$) systems. We employ the complex scaling method for the coupled channel Hamiltonian with the $Y_cN$-CTNN potentials, which were proposed in our previous study. We find four sharp resonance states near the $Sigma_c N$ and $Sigma^*_c N$ thresholds. From the analysis of the binding energies of partial channel systems, we conclude that these resonance states are Feshbach resonances. We compare the results with the $Y_c N$ resonance states in the heavy quark limit, where the $Sigma_c N$ and $Sigma^*_c N$ thresholds are degenerate, and find that they form two pairs of the heavy-quark doublets in agreement with the heavy quark spin symmetry.