Do you want to publish a course? Click here

Lattice QCD on Non-Orientable Manifolds

104   0   0.0 ( 0 )
 Added by Simon Mages
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

A common problem in lattice QCD simulations on the torus is the extremely long autocorrelation time of the topological charge, when one approaches the continuum limit. The reason is the suppressed tunneling between topological sectors. The problem can be circumvented by replacing the torus with a different manifold, so that the connectivity of the configuration space is changed. This can be achieved by using open boundary conditions on the fields, as proposed earlier. It has the side effect of breaking translational invariance strongly. Here we propose to use a non-orientable manifold, and show how to define and simulate lattice QCD on it. We demonstrate in quenched simulations that this leads to a drastic reduction of the autocorrelation time. A feature of the new proposal is, that translational invariance is preserved up to exponentially small corrections. A Dirac-fermion on a non-orientable manifold poses a challenge to numerical simulations: the fermion determinant becomes complex. We propose two approaches to circumvent this problem.



rate research

Read More

234 - Yasumichi Aoki 2010
Recent developments in non-perturbative renormalization for lattice QCD are reviewed with a particular emphasis on RI/MOM scheme and its variants, RI/SMOM schemes. Summary of recent developments in Schroedinger functional scheme, as well as the summary of related topics are presented. Comparison of strong coupling constant and the strange quark mass from various methods are made.
68 - S. Dalley 1999
Ideas and recent results for light-front Hamiltonian quantisation of lattice gauge theories.
We investigate the complexity of finding an embedded non-orientable surface of Euler genus $g$ in a triangulated $3$-manifold. This problem occurs both as a natural question in low-dimensional topology, and as a first non-trivial instance of embeddability of complexes into $3$-manifolds. We prove that the problem is NP-hard, thus adding to the relatively few hardness results that are currently known in 3-manifold topology. In addition, we show that the problem lies in NP when the Euler genus g is odd, and we give an explicit algorithm in this case.
We present lattice results for the isovector unpolarized parton distribution with nonperturbative RI/MOM-scheme renormalization on the lattice. In the framework of large-momentum effective field theory (LaMET), the full Bjorken-$x$ dependence of a momentum-dependent quasi-distribution is calculated on the lattice and matched to the ordinary lightcone parton distribution at one-loop order, with power corrections included. The important step of RI/MOM renormalization that connects the lattice and continuum matrix elements is detailed in this paper. A few consequences of the results are also addressed here.
194 - Adriano Di Giacomo 2010
The long standing problem is solved why the number and the location of monopoles observed in Lattice configurations depend on the choice of the gauge used to detect them, in contrast to the obvious requirement that monopoles, as physical objects, must have a gauge-invariant status. It is proved, by use of non-abelian Bianchi identities, that monopoles are indeed gauge-invariant: the technique used to detect them has instead an efficiency which depends on the choice of the abelian projection, in a known and controllable way.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا