Do you want to publish a course? Click here

Constituent-counting rule in photoproduction of hyperon resonances

96   0   0.0 ( 0 )
 Added by Takayasu Sekihara
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

We analyze the CLAS data on the photoproduction of hyperon resonances, as well as the available data for the ground state $Lambda$ and $Sigma ^{0}$ of the CLAS and SLAC-E84 collaborations, by considering constituent-counting rule suggested by perturbative QCD. The counting rule emerges as a scaling behavior of cross sections in hard exclusive reactions with large scattering angles, and it enables us to determine the number of elementary constituents inside hadrons. Therefore, it could be used as a new method for identifying internal constituents of exotic-hadron candidates. From the analyses of the $gamma , p to K^{+} Lambda$ and $K^{+} Sigma ^{0}$ reactions, we find that the number of the elementary constituents is consistent with $n_{gamma} = 1$, $n_{p} = 3$, $n_{K^{+}} = 2$, and $n_{Lambda} = n_{Sigma ^{0}} = 3$. Then, the analysis is made for the photoproductions of the hyperon resonances $Lambda (1405)$, $Sigma (1385)^{0}$, and $Lambda (1520)$, where $Lambda (1405)$ is considered to be a $bar K N$ molecule and hence its constituent number could be five. However, we find that the current data are not enough to conclude the numbers of their constituent. It is necessary to investigate the higher-energy region at $sqrt{s} > 2.8$ GeV experimentally beyond the energy of the available CLAS data for counting the number of constituents clearly. We also mention that our results indicate energy dependence in the constituent number, especially for $Lambda (1405)$. If an excited hyperon is a mixture of three-quark and five-quark states, the energy dependence of the scaling behavior could be valuable for finding its composition and mixture.



rate research

Read More

The understanding of the pion structure as described in terms of transverse-momentum dependent parton distribution functions (TMDs) is of importance for the interpretation of currently ongoing Drell-Yan experiments with pion beams. In this work we discuss the description of pion TMDs beyond leading twist in a pion model formulated in the light-front constituent framework. For comparison, we also review and derive new results for pion TMDs in the bag and spectator models.
We explore the sensitivity of photon-beam experiments to axion-like particles (ALPs) with QCD-scale masses whose dominant coupling to the Standard Model is either to photons or gluons. We introduce a novel data-driven method that eliminates the need for knowledge of nuclear form factors or the photon-beam flux when considering coherent Primakoff production off a nuclear target, and show that data collected by the PrimEx experiment could substantially improve the sensitivity to ALPs with $0.03 lesssim m_a lesssim 0.3$ GeV. Furthermore, we explore the potential sensitivity of running the GlueX experiment with a nuclear target and its planned PrimEx-like calorimeter. For the case where the dominant coupling is to gluons, we study photoproduction for the first time, and predict the future sensitivity of the GlueX experiment using its nominal proton target. Finally, we set world-leading limits for both the ALP-gluon coupling and the ALP-photon coupling based on public mass plots.
We investigate the properties of the hidden charm pentaquark-like resonances first observed by LHCb in 2015, by measuring the polarization transfer KLL between the incident photon and the outgoing proton in the exclusive photoproduction of J/psi near threshold. We present a first estimate of the sensitivity of this observable to the pentaquark photocouplings and hadronic branching ratios, and extend our predictions to the case of initial state helicity correlation ALL, using a polarized target. These results serve as a benchmark for the SBS experiment at Jefferson Lab, which proposes to measure for the first time the helicity correlations ALL and KLL in J/psi exclusive photoproduction, in order to determine the pentaquark photocouplings and branching ratios.
We study the photoproduction of the $Lambda(1405)$ and $Sigma(1400)$ hyperon resonances, the latter of which is not a well established state. We evaluate the $s$-, $t$- and $u$-channel diagrams in the Born approximation by employing the effective Lagrangians. A new ingredient is the inclusion of a nucleon resonance $N^*(1895)$ that is dynamically generated with predictions for its coupling to the $KLambda(1405)$ and $KSigma(1400)$ channels. To extend the applicability of the model to energies beyond the threshold region, we consider a Regge model for the $t$-channel $K$- and $K^*$-exchanges. Our results are in good agreement with the CLAS data available on $Lambda(1405)$, while for $Sigma(1400)$ we predict observables for its production. We also provide polarization observables for both hyperon productions, which can be useful in future experimental investigations. The present study provides new information on the nucleon resonance $N^*(1895)$ which can be an alternative source for generating the hyperon resonances $Lambda(1405)$ and $Sigma(1400)$.
Cross-sections and recoil polarizations for the reactions gamma + p --> K^+ + Lambda and gamma + p --> K^+ + Sigma^0 have been measured with high statistics and with good angular coverage for center-of-mass energies between 1.6 and 2.3 GeV. In the K^+Lambda channel we confirm a structure near W=1.9 GeV at backward kaon angles, but our data shows a more complex s- and u- channel resonance structure than previously seen. This structure is present at forward and backward angles but not central angles, and its position and width change with angle, indicating that more than one resonance is playing a role. Rising back-angle cross sections at higher energies and large positive polarization at backward angles are consistent with sizable s- or u-channel contributions. None of the model calculations we present can consistently explain these aspects of the data.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا