Do you want to publish a course? Click here

Entanglement entropy in scalar field theory on the fuzzy sphere

117   0   0.0 ( 0 )
 Added by Asato Tsuchiya
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

We study entanglement entropy on the fuzzy sphere. We calculate it in a scalar field theory on the fuzzy sphere, which is given by a matrix model. We use a method that is based on the replica method and applicable to interacting fields as well as free fields. For free fields, we obtain the results consistent with the previous study, which serves as a test of the validity of the method. For interacting fields, we perform Monte Carlo simulations at strong coupling and see a novel behavior of entanglement entropy.



rate research

Read More

We investigate entanglement entropy in a scalar field theory on the fuzzy sphere. The theory is realized by a matrix model. In our previous study, we confirmed that entanglement entropy in the free case is proportional to the square of the boundary area of a focused region. Here we argue that this behavior of entanglement entropy can be understood by the fact that the theory is regularized by matrices, and further examine the dependence of entanglement entropy on the matrix size. In the interacting case, by performing Monte Carlo simulations, we observe a transition from a generalized volume law, which is obtained by integrating the square of area law, to the square of area law.
We study scalar solitons on the fuzzy sphere at arbitrary radius and noncommutativity. We prove that no solitons exist if the radius is below a certain value. Solitons do exist for radii above a critical value which depends on the noncommutativity parameter. We construct a family of soliton solutions which are stable and which converge to solitons on the Moyal plane in an appropriate limit. These solutions are rotationally symmetric about an axis and have no allowed deformations. Solitons that describe multiple lumps on the fuzzy sphere can also be constructed but they are not stable.
We investigate quantum corrections in non-commutative gauge theory on fuzzy sphere. We study translation invariant models which classically favor a single fuzzy sphere with U(1) gauge group. We evaluate the effective actions up to the two loop level. We find non-vanishing quantum corrections at each order even in supersymmetric models. In particular the two loop contribution favors U(n) gauge group over U(1) contrary to the tree action in a deformed IIB matrix model with a Myers term. We further observe close correspondences to 2 dimensional quantum gravity.
140 - Benjamin Doyon 2008
Recently, Cardy, Castro Alvaredo and the author obtained the first exponential correction to saturation of the bi-partite entanglement entropy at large region length, in massive two-dimensional integrable quantum field theory. It only depends on the particle content of the model, and not on the way particles scatter. Based on general analyticity arguments for form factors, we propose that this result is universal, and holds for any massive two-dimensional model (also out of integrability). We suggest a link of this result with counting pair creations far in the past.
60 - Michael Pretko 2018
Despite the seeming simplicity of the theory, calculating (and even defining) entanglement entropy for the Maxwell theory of a $U(1)$ gauge field in (3+1) dimensions has been the subject of controversy. It is generally accepted that the ground state entanglement entropy for a region of linear size $L$ behaves as an area law with a subleading logarithm, $S = alpha L^2 -gamma log L$. While the logarithmic coefficient $gamma$ is believed to be universal, there has been disagreement about its precise value. After carefully accounting for subtle boundary corrections, multiple analyses in the high energy literature have converged on an answer related to the conformal trace anomaly, which is only sensitive to the local curvature of the partition. In contrast, a condensed matter treatment of the problem yielded a topological contribution which is not captured by the conformal field theory calculation. In this perspective piece, we review aspects of the various calculations and discuss the resolution of the discrepancy, emphasizing the important role played by charged states (the extended Hilbert space) in defining entanglement for a gauge theory. While the trace anomaly result is sufficient for a strictly pure gauge field, coupling the gauge field to dynamical charges of mass $m$ gives a topological contribution to $gamma$ which survives even in the $mrightarrowinfty$ limit. For many situations, the topological contribution from dynamical charges is physically meaningful and should be taken into account. We also comment on other common issues of entanglement in gauge theories, such as entanglement distillation, algebraic definitions of entanglement, and gauge-fixing procedures.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا