Do you want to publish a course? Click here

Geometric Curvature and Phase of the Rabi model

73   0   0.0 ( 0 )
 Added by Yunbo Zhang
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the geometric curvature and phase of the Rabi model. Under the rotating-wave approximation (RWA), we apply the gauge independent Berry curvature over a surface integral to calculate the Berry phase of the eigenstates for both single and two-qubit systems, which is found to be identical with the system of spin-1/2 particle in a magnetic field. We extend the idea to define a vacuum-induced geometric curvature when the system starts from an initial state with pure vacuum bosonic field. The induced geometric phase is related to the average photon number in a period which is possible to measure in the qubit-cavity system. We also calculate the geometric phase beyond the RWA and find an anomalous sudden change, which implies the breakdown of the adiabatic theorem and the Berry phases in an adiabatic cyclic evolution are ill-defined near the anti-crossing point in the spectrum.



rate research

Read More

The asymmetric quantum Rabi model (AQRM), which describes the interaction between a quantum harmonic oscillator and a biased qubit, arises naturally in circuit quantum electrodynamic circuits and devices. The existence of hidden symmetry in the AQRM leads to a rich energy landscape of conical intersections (CIs) and thus to interesting topological properties. However, current approximations to the AQRM fail to reproduce these CIs correctly. To overcome these limitations we propose a generalized adiabatic approximation (GAA) to describe the energy spectrum of the AQRM. This is achieved by combining the perturbative adiabatic approximation and the exact exceptional solutions to the AQRM. The GAA provides substantial improvement to the existing approaches and pushes the limit of the perturbative treatment into non-perturbative regimes. As a preliminary example of the application of the GAA we calculate the geometric phases around CIs associated with the AQRM.
The out-of-time-order correlators (OTOCs) is used to study the quantum phase transitions (QPTs) between the normal phase and the superradiant phase in the Rabi and few-body Dicke models with large frequency ratio of theatomic level splitting to the single-mode electromagnetic radiation field frequency. The focus is on the OTOC thermally averaged with infinite temperature, which is an experimentally feasible quantity. It is shown that thecritical points can be identified by long-time averaging of the OTOC via observing its local minimum behavior. More importantly, the scaling laws of the OTOC for QPTs are revealed by studying the experimentally accessible conditions with finite frequency ratio and finite number of atoms in the studied models. The critical exponents extracted from the scaling laws of OTOC indicate that the QPTs in the Rabi and Dicke models belong to the same universality class.
We study the dynamical properties of the quantum Rabi model within a systematic expansion method. Based on the observation that the parity symmetry of the Rabi model is kept during the evolution of the states, we decompose the initial state and the time-dependent one into a part of a positive and a negative parity expanded by the superposition of the coherent states. The evolutions for the corresponding positive and the negative parity are obtained, where the expansion coefficients in the dynamical equations are known from the recurrence relation derived.
Various quantum phase transitions in the anisotropic Rabi-Stark model with both the nonlinear Stark coupling and the linear dipole coupling between a two-level system and a single-mode cavity are studied in this work. The first-order quantum phase transitions are detected by the level crossing of the ground-state and the first-excited state with the help of the pole structure of the transcendental functions derived by the Bogoliubov operators approach. As the nonlinear Stark coupling is the same as the cavity frequency, this model can be solved by mapping to an effective quantum oscillator. All energy levels close at the critical coupling in this case, indicating continuous quantum phase transitions. The critical gap exponent is independent of the anisotropy as long as the counter-rotating wave coupling is present, but essentially changed if the counter-rotating wave coupling disappears completely. It is suggested that the gapless Goldstone mode excitations could appear above a critical coupling in the present model in the rotating-wave approximation.
Using Hills determinant method we show that the set of Judds solutions is only a subset of all the eigenvalues with the form $E_n=nomega-g^2/omega$ in the spectrum of the Rabi model. Therefore Braaks solution of the quantum Rabi model is not complete.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا