No Arabic abstract
We study the dynamics of a classical nonlinear oscillator subject to noise and driven by a sinusoidal force. In particular, we give an analytical identification of the mechanisms responsible for the supernarrow peaks observed recently in the spectrum of a mechanical realization of the system. Our approach, based on the application of averaging techniques, simulates standard detection schemes used in practice. The spectral peaks, detected in a range of parameters corresponding to the existence of two attractors in the deterministic system, are traced to characteristics already present in the linearized stochastic equations. It is found that, for specific variations of the parameters, the characteristic frequencies near the attractors converge on the driving frequency, and, as a consequence, the widths of the peaks in the spectrum are significantly reduced. The implications of the study to the control of the observed coherent response of the system are discussed.
We study the escape of a chain of coupled units over the barrier of a metastable potential. It is demonstrated that a very weak external driving field with suitably chosen frequency suffices to accomplish speedy escape. The latter requires the passage through a transition state the formation of which is triggered by permanent feeding of energy from a phonon background into humps of localised energy and elastic interaction of the arising breather solutions. In fact, cooperativity between the units of the chain entailing coordinated energy transfer is shown to be crucial for enhancing the rate of escape in an extremely effective and low-energy cost way where the effect of entropic localisation and breather coalescence conspire.
We develop a theory for polymer translocation driven by a time-dependent force through an oscillating nanopore. To this end, we extend the iso-flux tension propagation theory (IFTP) [Sarabadani textit{et al., J. Chem. Phys.}, 2014, textbf{141}, 214907] for such a setup. We assume that the external driving force in the pore has a component oscillating in time, and the flickering pore is similarly described by an oscillating term in the pore friction. In addition to numerically solving the model, we derive analytical approximations that are in good agreement with the numerical simulations. Our results show that by controlling either the force or pore oscillations, the translocation process can be either sped up or slowed down depending on the frequency of the oscillations and the characteristic time scale of the process. We also show that while in the low and high frequency limits the translocation time $tau$ follows the established scaling relation with respect to chain length $N_0$, in the intermediate frequency regime small periodic fluctuations can have drastic effects on the dynamical scaling. The results can be easily generalized for non-periodic oscillations and elucidate the role of time dependent forces and pore oscillations in driven polymer translocation.
Compressible electron flow through a narrow cavity is theoretically unstable, and the oscillations occurring during the instability have been proposed as a method of generating Terahertz radiation. We numerically demonstrate that the endpoint of this instability is a nonlinear hydrodynamic oscillator, consisting of an alternating shock wave and rarefaction-like relaxation flowing back and forth in the device. This qualitative physics is robust to cavity inhomogeneity and changes in the equation of state of the fluid. We discuss the frequency and amplitude dependence of the emitted radiation on physical parameters (viscosity, momentum relaxation rate, and bias current) beyond linear response theory, providing clear predictions for future experiments.
One notion of phase for stochastic oscillators is based on the mean return-time (MRT): a set of points represents a certain phase if the mean time to return from any point in this set to this set after one rotation is equal to the mean rotation period of the oscillator (irrespective of the starting point). For this so far only algorithmically defined phase, we derive here analytical expressions for the important class of isotropic stochastic oscillators. This allows us to evaluate cases from the literature explicitly and to study the behavior of the MRT phase in the limits of strong noise. We also use the same formalism to show that lines of constant return time variance (instead of constant mean return time) can be defined, and that they in general differ from the MRT-isochrons.
We numerically study the two-dimensional, area preserving, web map. When the map is governed by ergodic behavior, it is, as expected, correctly described by Boltzmann-Gibbs statistics, based on the additive entropic functional $S_{BG}[p(x)] = -kint dx,p(x) ln p(x)$. In contrast, possible ergodicity breakdown and transitory sticky dynamical behavior drag the map into the realm of generalized $q$-statistics, based on the nonadditive entropic functional $S_q[p(x)]=kfrac{1-int dx,[p(x)]^q}{q-1}$ ($q in {cal R}; S_1=S_{BG}$). We statistically describe the system (probability distribution of the sum of successive iterates, sensitivity to the initial condition, and entropy production per unit time) for typical values of the parameter that controls the ergodicity of the map. For small (large) values of the external parameter $K$, we observe $q$-Gaussian distributions with $q=1.935dots$ (Gaussian distributions), like for the standard map. In contrast, for intermediate values of $K$, we observe a different scenario, due to the fractal structure of the trajectories embedded in the chaotic sea. Long-standing non-Gaussian distributions are characterized in terms of the kurtosis and the box-counting dimension of chaotic sea.