Do you want to publish a course? Click here

Classically Scale Invariant Inflation, Supermassive WIMPs, and Adimensional Gravity

71   0   0.0 ( 0 )
 Added by Arsham Farzinnia
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We introduce a minimal and yet comprehensive framework with $CP$- and classical scale-symmetries, in order to simultaneously address the hierarchy problem, neutrino masses, dark matter, and inflation. One complex gauge singlet scalar and three flavors of the right-handed Majorana neutrinos are added to the standard model content, facilitating the see-saw mechanism, among others. An adimensional theory of gravity (Agravity) is employed, allowing for the trans-Planckian field excursions. The weak and Planck scales are induced by the Higgs portal and the scalar non-minimal couplings, respectively, once a Coleman-Weinberg dynamically-generated vacuum expectation value for the singlet scalar is obtained. All scales are free from any mutual quadratic destabilization. The $CP$-symmetry prevents a decay of the pseudoscalar singlet, rendering it a suitable WIMPzilla dark matter candidate with the correct observational relic abundance. Identifying the pseudo-Nambu-Goldstone boson of the (approximate) scale symmetry with the inflaton field, the model accommodates successful slow-roll inflation, compatible with the observational data. We reach the conclusion that a pseudo-Nambu-Goldstone inflaton, within a classically scale-symmetric framework, yields lighter WIMPzillas.



rate research

Read More

Scalar fields, $phi_i$ can be coupled non-minimally to curvature and satisfy the general criteria: (i) the theory has no mass input parameters, including the Planck mass; (ii) the $phi_i$ have arbitrary values and gradients, but undergo a general expansion and relaxation to constant values that satisfy a nontrivial constraint, $K(phi_i) =$ constant; (iii) this constraint breaks scale symmetry spontaneously, and the Planck mass is dynamically generated; (iv) there can be adequate inflation associated with slow roll in a scale invariant potential subject to the constraint; (v) the final vacuum can have a small to vanishing cosmological constant (vi) large hierarchies in vacuum expectation values can naturally form; (vii) there is a harmless dilaton which naturally eludes the usual constraints on massless scalars. These models are governed by a global Weyl scale symmetry and its conserved current, $K_mu$ . At the quantum level the Weyl scale symmetry can be maintained by an invariant specification of renormalized quantities.
187 - D. M. Ghilencea 2020
We present a comparative study of inflation in two theories of quadratic gravity with {it gauged} scale symmetry: 1) the original Weyl quadratic gravity and 2) the theory defined by a similar action but in the Palatini approach obtained by replacing the Weyl connection by its Palatini counterpart. These theories have different vectorial non-metricity induced by the gauge field ($w_mu$) of this symmetry. Both theories have a novel spontaneous breaking of gauged scale symmetry, in the absence of matter, where the necessary scalar field is not added ad-hoc to this purpose but is of geometric origin and part of the quadratic action. The Einstein-Proca action (of $w_mu$), Planck scale and metricity emerge in the broken phase after $w_mu$ acquires mass (Stueckelberg mechanism), then decouples. In the presence of matter ($phi_1$), non-minimally coupled, the scalar potential is similar in both theories up to couplings and field rescaling. For small field values the potential is Higgs-like while for large fields inflation is possible. Due to their $R^2$ term, both theories have a small tensor-to-scalar ratio ($rsim 10^{-3}$), larger in Palatini case. For a fixed spectral index $n_s$, reducing the non-minimal coupling ($xi_1$) increases $r$ which in Weyl theory is bounded from above by that of Starobinsky inflation. For a small enough $xi_1leq 10^{-3}$, unlike the Palatini version, Weyl theory gives a dependence $r(n_s)$ similar to that in Starobinsky inflation, while also protecting $r$ against higher dimensional operators corrections.
74 - D. M. Ghilencea 2020
We study quadratic gravity $R^2+R_{[mu u]}^2$ in the Palatini formalism where the connection and the metric are independent. This action has a {it gauged} scale symmetry (also known as Weyl gauge symmetry) of Weyl gauge field $v_mu= (tildeGamma_mu-Gamma_mu)/2$, with $tildeGamma_mu$ ($Gamma_mu$) the trace of the Palatini (Levi-Civita) connection, respectively. The underlying geometry is non-metric due to the $R_{[mu u]}^2$ term acting as a gauge kinetic term for $v_mu$. We show that this theory has an elegant spontaneous breaking of gauged scale symmetry and mass generation in the absence of matter, where the necessary scalar field ($phi$) is not added ad-hoc to this purpose but is extracted from the $R^2$ term. The gauge field becomes massive by absorbing the derivative term $partial_mulnphi$ of the Stueckelberg field (dilaton). In the broken phase one finds the Einstein-Proca action of $v_mu$ of mass proportional to the Planck scale $Msim langlephirangle$, and a positive cosmological constant. Below this scale $v_mu$ decouples, the connection becomes Levi-Civita and metricity and Einstein gravity are recovered. These results remain valid in the presence of non-minimally coupled scalar field (Higgs-like) with Palatini connection and the potential is computed. In this case the theory gives successful inflation and a specific prediction for the tensor-to-scalar ratio $0.007leq r leq 0.01$ for current spectral index $n_s$ (at $95%$CL) and N=60 efolds. This value of $r$ is mildly larger than in inflation in Weyl quadratic gravity of similar symmetry, due to different non-metricity. This establishes a connection between non-metricity and inflation predictions and enables us to test such theories by future CMB experiments.
Thanks to the Planck Collaboration, we know the value of the scalar spectral index of primordial fluctuations with unprecedented precision. In addition, the joint analysis of the data from Planck, BICEP2, and KEK has further constrained the value of the tensor-to-scalar ratio $r$ so that chaotic inflationary scenarios seem to be disfavoured. Inspired by these results, we look for a model that yields a value of $r$ that is larger than the one predicted by the Starobinsky model but is still within the new constraints. We show that purely quadratic, renormalizable, and scale-invariant gravity, implemented by loop-corrections, satisfies these requirements.
We study inflation driven by the Higgs field in the Einstein-Cartan formulation of gravity. In this theory, the presence of the Holst and Nieh-Yan terms with the Higgs field non-minimally coupled to them leads to three additional coupling constants. For a broad range of parameters, we find that inflation is both possible and consistent with observations. In most cases, the spectral index is given by $n_s=1-2/N_star$ (with $N_star$ the number of e-foldings) whereas the tensor-to-scalar ratio $r$ can vary between about $10^{-10}$ and $1$. Thus, there are scenarios of Higgs inflation in the Einstein-Cartan framework for which the detection of gravitational waves from inflation is possible in the near future. In certain limits, the known models of Higgs inflation in the metric and Palatini formulations of gravity are reproduced. Finally, we discuss the robustness of inflationary dynamics against quantum corrections due to the scalar and fermion fields.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا