Do you want to publish a course? Click here

Second Epoch Hubble Space Telescope Observations of Keplers Supernova Remnant: The Proper Motions of Balmer Filaments

145   0   0.0 ( 0 )
 Added by Ravi Sankrit
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on the proper motions of Balmer-dominated filaments in Keplers supernova remnant using high resolution images obtained with the Hubble Space Telescope at two epochs separated by about 10 years. We use the improved proper motion measurements and revised values of shock velocities to derive a distance to Kepler of 5.1 [+0.8, -0.7] kpc. The main shock around the northern rim of the remnant has a typical speed of 1690 km/s and is encountering material with densities of about 8 cm^-3. We find evidence for the variation of shock properties over small spatial scales, including differences in the driving pressures as the shock wraps around a curved cloud surface. We find that the Balmer filaments ahead of the ejecta knot on the northwest boundary of the remnant are becoming fainter and more diffuse. We also find that the Balmer filaments associated with circumstellar material in the interior regions of the remnant are due to shocks with significantly lower velocities and that the brightness variations among these filaments trace the density distribution of the material, which may have a disk-like geometry.



rate research

Read More

178 - Satoru Katsuda 2008
The X-ray structure of Keplers supernova remnant shows a rounded shape delineated by forward shocks. We measure proper motions of the forward shocks on overall rims of the remnant, by using archival Chandra data taken in two epochs with time difference of 6.09 yr. The proper motions of the forward shocks on the northern rim are measured to be from 0.076 (+/-0.032+/-0.016) to 0.110 (+/-0.014+/-0.016) per yr, while those on the rest of the rims are measured to be from 0.150 (+/-0.017+/-0.016) to 0.300 (+/-0.048+/-0.016) per yr, here the first-term errors are statistical uncertainties and the second-term errors are systematic uncertainties. Combining the best-estimated shock velocity of 1660+/-120 km/sec measured for Balmer-dominated filaments in the northern and central portions of the remnant (Sankrit et al. 2005) with the proper motions derived for the forward shocks on the northern rim, we estimate the distance of 3.3 (2.9-4.9) kpc to the remnant. We measure the expansion indices to be 0.47-0.82 for most of the rims. These values are consistent with those expected in Type-Ia SN explosion models, in which the ejecta and the circumstellar medium have power-law density profiles whose indices are 5-7 and 0-2, respectively. Also, we should note the slower expansion on the northern rim than that on the southern rim. This is likely caused by the inhomogeneous circumstellar medium; the density of the circumstellar medium is higher in the north than that in the south of the remnant. The newly estimated geometric center, around which we believe the explosion point exists, is located at about 5 offset in the north of the radio center.
330 - E.A. Helder 2013
We present a proper motion study of the eastern shock-region of the supernova remnant RCW 86 (MSH 14-63, G315.4-2.3), based on optical observations carried out with VLT/FORS2 in 2007 and 2010. For both the northeastern and southeastern regions, we measure an average proper motion of H-alpha filaments of 0.10 +/- 0.02 arcsec/yr, corresponding to 1200 +/- 200 km/s at 2.5kpc. There is substantial variation in the derived proper motions, indicating shock velocities ranging from just below 700 km/s to above 2200 km/s. The optical proper motion is lower than the previously measured X-ray proper motion of northeastern region. The new measurements are consistent with the previously measured proton temperature of 2.3 +/- 0.3 keV, assuming no cosmic-ray acceleration. However, within the uncertainties, moderately efficient (< 27 per cent) shock acceleration is still possible. The combination of optical proper motion and proton temperature rule out the possibility that RCW 86 has a distance less than 1.5kpc. The similarity of the proper motions in the northeast and southeast is peculiar, given the different densities and X-ray emission properties of the regions. The northeastern region has lower densities and the X-ray emission is synchrotron dominated, suggesting that the shock velocities should be higher than in the southeastern, thermal X-ray dominated, region. A possible solution is that the H-alpha emitting filaments are biased toward denser regions, with lower shock velocities. Alternatively, in the northeast the shock velocity may have decreased rapidly during the past 200yr, and the X-ray synchrotron emission is an afterglow from a period when the shock velocity was higher.
With archival and new Hubble Space Telescope observations we have refined the space-velocity measurements of the stars in the central region of the remnant of Tychos supernova (SN) 1572, one of the historical Galactic Type Ia supernova remnants (SNRs). We derived a proper motion for Tycho-G of (mu_RA_cos_dec;mu_dec)=(-2.63;-3.98)+/-(0.06;0.04)[formal errors]+/-(0.18;0.10)[expected errors] mas/yr. We also reconstruct the binary orbit that Tycho-G should have followed if it were the surviving companion of SN 1572. We redetermine the Ni abundance of this star and compare it with new abundance data from stars of the Galactic disk, finding that [Ni/Fe] is about 1.7 sigma above the Galactic trend. From the high velocity (v_b = -50+/-14 km/s) of Tycho-G perpendicular to the Galactic plane, its metallicity, and its Ni excess, we find the probability of its being a chance interloper to be P < 0.00037 at most. The projected rotational velocity of the star should be below current observational limits. The projected position of Tycho-G is, within the uncertainties, consistent with the centroid of the X-ray emission of Tychos SNR; moreover, its brightness is generally consistent with the post-explosion evolution of the luminosity of a SN companion. Among the other 23 stars having V<22 mag and located within 42 arcsec from the X-ray centroid, only 4 are at distances compatible with that of the SNR, and none of them shows any peculiarity. Therefore, if even Tycho-G is not the surviving companion of SN 1572, the absence of other viable candidates does favor the merging of two white dwarfs as the producer of the SN.
We present complicated dust structures within multiple regions of the candidate supernova remnant (SNR) the `Tornado (G357.7-0.1) using observations with Spitzer and Herschel. We use Point Process Mapping, PPMAP, to investigate the distribution of dust in the Tornado at a resolution of 8, compared to the native telescope beams of 5-36. We find complex dust structures at multiple temperatures within both the head and the tail of the Tornado, ranging from 15 to 60K. Cool dust in the head forms a shell, with some overlap with the radio emission, which envelopes warm dust at the X-ray peak. Akin to the terrestrial sandy whirlwinds known as `Dust Devils, we find a large mass of dust contained within the Tornado. We derive a total dust mass for the Tornado head of 16.7 solar masses, assuming a dust absorption coefficient of kappa_300 =0.56m^2 kg^1, which can be explained by interstellar material swept up by a SNR expanding in a dense region. The X-ray, infra-red, and radio emission from the Tornado head indicate that this is a SNR. The origin of the tail is more unclear, although we propose that there is an X-ray binary embedded in the SNR, the outflow from which drives into the SNR shell. This interaction forms the helical tail structure in a similar manner to that of the SNR W50 and microquasar SS433.
We present a multi-epoch Hubble Space Telescope (HST) study of stellar proper motions (PMs) for four fields spanning 200 degrees along the Sagittarius (Sgr) stream: one trailing arm field, one field near the Sgr dwarf spheroidal tidal radius, and two leading arm fields. We determine absolute PMs of dozens of individual stars per field, using established techniques that use distant background galaxies as stationary reference frame. Stream stars are identified based on combined color-magnitude diagram and PM information. The results are broadly consistent with the few existing PM measurements for the Sgr galaxy and the trailing arm. However, our new results provide the highest PM accuracy for the stream to date, the first PM measurements for the leading arm, and the first PM measurements for individual stream stars; we also serendipitously determine the PM of the globular cluster NGC~6652. In the trailing-arm field, the individual PMs allow us to kinematically separate trailing-arm stars from leading-arm stars that are 360 degrees further ahead in their orbit. Also, in three of our fields we find indications that two distinct kinematical components may exist within the same arm and wrap of the stream. Qualitative comparison of the HST data to the predictions of the Law & Majewski and Penarrubia et al. N-body models show that the PM measurements closely follow the predicted trend with Sgr longitude. This provides a successful consistency check on the PM measurements, as well as on these N-body approaches (which were not tailored to fit any PM data).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا