Principal component analysis (PCA) is not only a fundamental dimension reduction method, but is also a widely used network anomaly detection technique. Traditionally, PCA is performed in a centralized manner, which has poor scalability for large distributed systems, on account of the large network bandwidth cost required to gather the distributed state at a fusion center. Consequently, several recent works have proposed various distributed PCA algorithms aiming to reduce the communication overhead incurred by PCA without losing its inferential power. This paper evaluates the tradeoff between communication cost and solution quality of two distributed PCA algorithms on a real domain name system (DNS) query dataset from a large network. We also apply the distributed PCA algorithm in the area of network anomaly detection and demonstrate that the detection accuracy of both distributed PCA-based methods has little degradation in quality, yet achieves significant savings in communication bandwidth.