No Arabic abstract
The effective actions describing the low-energy dynamics of QFTs involving gravity generically exhibit causality violations. These may take the form of superluminal propagation or Shapiro time advances and allow the construction of time machines, i.e. spacetimes admitting closed non-spacelike curves. Here, we discuss critically whether such causality violations may be used as a criterion to identify unphysical effective actions or whether, and how, causality problems may be resolved by embedding the action in a fundamental, UV complete QFT. We study in detail the case of photon scattering in an Aichelburg-Sexl gravitational shockwave background and calculate the phase shifts in QED for all energies, demonstrating their smooth interpolation from the causality-violating effective action values at low-energy to their manifestly causal high-energy limits. At low energies, these phase shifts may be interpreted as backwards-in-time coordinate jumps as the photon encounters the shock wavefront, and we illustrate how the resulting causality problems emerge and are resolved in a two-shockwave time machine scenario. The implications of our results for ultra-high (Planck) energy scattering, in which graviton exchange is modelled by the shockwave background, are highlighted.
Gravitational shockwaves are simple exact solutions of Einstein equations representing the fields of ultrarelativistic sources and idealized gravitational waves (shocks). Historically, much work has focused on shockwaves in the context of possible black hole formation in high energy particle collisions, yet they remain at the forefront of research even today. Representing hard modes in the bulk, shocks give rise to the gravitational memory effect at the classical level and implant supertranslation (BMS) hair onto a classical spacetime at the quantum level. The aim of this paper is to further our understanding of the `information content of such supertranslations. Namely, we show that, contrary to the several claims in the literature, a gravitational shockwave does leave a quantum imprint on the vacuum state of a test quantum field and that this imprint is accessible to local observers carrying Unruh--DeWitt (UDW) detectors in this spacetime.
In recent work we showed that, for a class of conformal field theories (CFT) with Gauss-Bonnet gravity dual, the shear viscosity to entropy density ratio, $eta/s$, could violate the conjectured Kovtun-Starinets-Son viscosity bound, $eta/sgeq1/4pi$. In this paper we argue, in the context of the same model, that tuning $eta/s$ below $(16/25)(1/4pi)$ induces microcausality violation in the CFT, rendering the theory inconsistent. This is a concrete example in which inconsistency of a theory and a lower bound on viscosity are correlated, supporting the idea of a possible universal lower bound on $eta/s$ for all consistent theories.
We show that it is not possible to UV-complete certain low-energy effective theories with spontaneously broken space-time symmetries by embedding them into linear sigma models, that is, by adding radial modes and restoring the broken symmetries. When such a UV completion is not possible, one can still raise the cutoff up to arbitrarily higher energies by adding fields that transform non-linearly under the broken symmetries, that is, new Goldstone bosons. However, this (partial) UV completion does not necessarily restore any of the broken symmetries. We illustrate this point by considering a concrete example in which a combination of space-time and internal symmetries is broken down to a diagonal subgroup. Along the way, we clarify a recently proposed interpretation of inverse Higgs constraints as gauge-fixing conditions.
The amplitude A(s,t) for ultra-high energy scattering can be found in the leading eikonal approximation by considering propagation in an Aichelburg-Sexl gravitational shockwave background. Loop corrections in the QFT describing the scattered particles are encoded for energies below the Planck scale in an effective action which in general exhibits causality violation and Shapiro time advances. In this paper, we use Penrose limit techniques to calculate the full energy dependence of the scattering phase shift Theta_scat(hat_s},, where the single variable hat_s = Gs/m^2 b^(d-2) contains both the CM energy s and impact parameter b, for a range of scalar QFTs in d dimensions with different renormalizability properties. We evaluate the high-energy limit of Theta_scat(hat_s) and show in detail how causality is related to the existence of a well-defined UV completion. Similarities with graviton scattering and the corresponding resolution of causality violation in the effective action by string theory are briefly discussed.
We study causality in gravitational systems beyond the classical limit. Using on-shell methods, we consider the one-loop corrections from charged particles to the photon energy-momentum tensor - the self-stress - that controls the quantum interaction between two on-shell photons and one off-shell graviton. The self-stress determines in turn the phase shift and time delay in the scattering of photons against a spectator particle of any spin in the eikonal regime. We show that the sign of the $beta$-function associated to the running gauge coupling is related to the sign of time delay at small impact parameter. Our results show that, at first post-Minkowskian order, asymptotic causality, where the time delay experienced by any particle must be positive, is respected quantum mechanically. Contrasted with asymptotic causality, we explore a local notion of causality, where the time delay is longer than the one of gravitons, which is seemingly violated by quantum effects.