No Arabic abstract
Energy deposition by active galactic nuclei jets into the ambient medium can affect galaxy formation and evolution, the cooling of gas flows at the centres of galaxy clusters, and the growth of the supermassive black holes. However, the processes that couple jet power to the ambient medium and determine jet morphology are poorly understood. For instance, there is no agreement on the cause of the well-known Fanaroff-Riley (FR) morphological dichotomy of jets, with FRI jets being shorter and less stable than FRII jets. We carry out global 3D magnetohydrodynamic simulations of relativistic jets propagating through the ambient medium. We show that the flat density profiles of galactic cores slow down and collimate the jets, making them susceptible to the 3D magnetic kink instability. We obtain a critical power, which depends on the galaxy core mass and radius, below which jets become kink-unstable within the core, stall, and inflate cavities filled with relativistically-hot plasma. Jets above the critical power stably escape the core and form powerful backflows. Thus, the kink instability controls the jet morphology and can lead to the FR dichotomy. The model-predicted dependence of the critical power on the galaxy optical luminosity agrees well with observations.
Relativistic jets naturally occur in astrophysical systems that involve accretion onto compact objects, such as core collapse of massive stars in gamma-ray bursts (GRBs) and accretion onto supermassive black holes in active galactic nuclei (AGN). It is generally accepted that these jets are powered electromagnetically, by the magnetised rotation of a central compact object. However, how they produce the observed emission and survive the propagation for many orders of magnitude in distance without being disrupted by current-driven non-axisymmetric instabilities is the subject of active debate. We carry out time-dependent 3D relativistic magnetohydrodynamic simulations of relativistic, Poynting flux dominated jets. The jets are launched self-consistently by the rotation of a strongly magnetised central compact object. This determines the natural degree of azimuthal magnetic field winding, a crucial factor that controls jet stability. We find that the jets are susceptible to two types of instability: (i) a global, external kink mode that grows on long time scales and causes the jets to bodily bend sideways. Whereas this mode does not cause jet disruption over the simulated distances, it substantially reduces jet propagation speed. We show, via an analytic model, that the growth of the external kink mode depends on the slope of the ambient medium density profile. In flat density distributions characteristic of galactic cores, an AGN jet may stall, whereas in stellar envelopes the external kink weakens as the jet propagates outward; (ii) a local, internal kink mode that grows over short time scales and causes small-angle magnetic reconnection and conversion of about half of jet electromagnetic energy flux into heat. Based on the robustness and energetics of the internal kink mode, we suggest that this instability is the main dissipation mechanism responsible for powering GRB prompt emission.
Collimated outflows (jets) appear to be a ubiquitous phenomenon associated with the accretion of material onto a compact object. Despite this ubiquity, many fundamental physics aspects of jets are still poorly understood and constrained. These include the mechanism of launching and accelerating jets, the connection between these processes and the nature of the accretion flow, and the role of magnetic fields; the physics responsible for the collimation of jets over tens of thousands to even millions of gravitational radii of the central accreting object; the matter content of jets; the location of the region(s) accelerating particles to TeV (possibly even PeV and EeV) energies (as evidenced by gamma-ray emission observed from many jet sources) and the physical processes responsible for this particle acceleration; the radiative processes giving rise to the observed multi-wavelength emission; and the topology of magnetic fields and their role in the jet collimation and particle acceleration processes. This chapter reviews the main knowns and unknowns in our current understanding of relativistic jets, in the context of the main model ingredients for Galactic and extragalactic jet sources. It discusses aspects specific to active Galactic nuclei (especially blazars) and microquasars, and then presents a comparative discussion of similarities and differences between them.
The excess of neutrino candidate events detected by IceCube from the direction of TXS 0506+056 has generated a great deal of interest in blazars as sources of high-energy neutrinos. In this study, we analyze the publicly available portion of the IceCube dataset, performing searches for neutrino point sources in spatial coincidence with the blazars and other active galactic nuclei contained in the Fermi 3LAC and the Roma BZCAT catalogs, as well as in spatial and temporal coincidence with flaring sources identified in the Fermi Collaborations All-Sky Variability Analysis (FAVA). We find no evidence that blazars generate a significant flux of high-energy neutrinos, and conclude that no more than 5-15% of the diffuse flux measured by IceCube can originate from this class of objects. While we cannot rule out the possibility that TXS 0506+056 has at times generated significant neutrino emission, we find that such behavior cannot be common among blazars, requiring TXS 0506+056 to be a rather extreme outlier and not representative of the overall blazar population. The bulk of the diffuse high-energy neutrino flux must instead be generated by a significantly larger population of less-luminous sources, such as non-blazar active galactic nuclei.
The study of velocity fields of the hot gas in galaxy clusters can help to unravel details of microphysics on small-scales and to decipher the nature of feedback by active galactic nuclei (AGN). Likewise, magnetic fields as traced by Faraday rotation measurements (RMs) inform about their impact on gas dynamics as well as on cosmic ray production and transport. We investigate the inherent relationship between large-scale gas kinematics and magnetic fields through non-radiative magnetohydrodynamical simulations of the creation, evolution and disruption of AGN jet-inflated lobes in an isolated Perseus-like galaxy cluster, with and without pre-existing turbulence. In particular, we connect cluster velocity measurements with mock RM maps to highlight their underlying physical connection, which opens up the possibility of comparing turbulence levels in two different observables. For single jet outbursts, we find only a local impact on the velocity field, i.e. the associated increase in velocity dispersion is not volume-filling. Furthermore, in a setup with pre-existing turbulence, this increase in velocity dispersion is largely hidden. We use mock X-ray observations to show that at arcmin resolution, the velocity dispersion is therefore dominated by existing large-scale turbulence and is only minimally altered by the presence of a jet. For the velocity structure of central gas uplifted by buoyantly rising lobes, we find fast, coherent outflows with low velocity dispersion. Our results highlight that projected velocity distributions show complex structures which pose challenges for the interpretation of observations.
The high-energy universe has revealed that energetic particles are ubiquitous in the cosmos and play a vital role in the cultivation of cosmic environments on all scales. Though they play a key role in cultivating the cosmological environment and/or enabling our studies of it, there is still much we do not know about AGNs and GRBs, particularly the avenue in which and through which they supply radiation and energetic particles, namely their jets. This White Paper is the second of a two-part series highlighting the most well-known high-energy cosmic accelerators and contributions that MeV gamma-ray astronomy will bring to understanding their energetic particle phenomena. The focus of this white paper is active galactic nuclei and gamma-ray bursts.