No Arabic abstract
Deriving the Einstein field equations (EFE) with matter fluid from the action principle is not straightforward, because mass conservation must be added as an additional constraint to make rest-frame mass density variable in reaction to metric variation. This can be avoided by introducing a constraint $delta(sqrt{-g}) = 0$ to metric variations $delta g^{mu u}$, and then the cosmological constant $Lambda$ emerges as an integration constant. This is a removal of one of the four constraints on initial conditions forced by EFE at the birth of the universe, and it may imply that EFE are unnecessarily restrictive about initial conditions. I then adopt a principle that the theory of gravity should be able to solve time evolution starting from arbitrary inhomogeneous initial conditions about spacetime and matter. The equations of gravitational fields satisfying this principle are obtained, by setting four auxiliary constraints on $delta g^{mu u}$ to extract six degrees of freedom for gravity. The cost of achieving this is a loss of general covariance, but these equations constitute a consistent theory if they hold in the special coordinate systems that can be uniquely specified with respect to the initial space-like hypersurface when the universe was born. This theory predicts that gravity is described by EFE with non-zero $Lambda$ in a homogeneous patch of the universe created by inflation, but $Lambda$ changes continuously across different patches. Then both the smallness and coincidence problems of the cosmological constant are solved by the anthropic argument. This is just a result of inhomogeneous initial conditions, not requiring any change of the fundamental physical laws in different patches.
Theoretically, the running of the cosmological constant in the IR region is not ruled out. On the other hand, from the QFT viewpoint, the energy released due to the variation of the cosmological constant in the late universe cannot go to the matter sector. For this reason, the phenomenological bounds on such a running are not sufficiently restrictive. The situation can be different in the early universe when the gravitational field was sufficiently strong to provide an efficient creation of particles from the vacuum. We develop a framework for systematically exploring this ossibility. It is supposed that the running occurs in the epoch when the Dark Matter already decoupled and is expanding adiabatically, while baryons are approximately massless and can be abundantly created from vacuum due to the decay of vacuum energy. By using the handy model of Reduced Relativistic Gas for describing the Dark Matter, we consider the dynamics of both cosmic background and linear perturbations and evaluate the impact of the vacuum decay on the matter power spectrum and to the first CMB peak. Additionally, using the combined data of CMB+BAO+SNIa we find the best fit values for the free parameters of our model.
We examine the class of initial conditions which give rise to inflation. Our analysis is carried out for several popular models including: Higgs inflation, Starobinsky inflation, chaotic inflation, axion monodromy inflation and non-canonical inflation. In each case we determine the set of initial conditions which give rise to sufficient inflation, with at least $60$ e-foldings. A phase-space analysis has been performed for each of these models and the effect of the initial inflationary energy scale on inflation has been studied numerically. This paper discusses two scenarios of Higgs inflation: (i) the Higgs is coupled to the scalar curvature, (ii) the Higgs Lagrangian contains a non-canonical kinetic term. In both cases we find Higgs inflation to be very robust since it can arise for a large class of initial conditions. One of the central results of our analysis is that, for plateau-like potentials associated with the Higgs and Starobinsky models, inflation can be realised even for initial scalar field values which lie close to the minimum of the potential. This dispels a misconception relating to plateau potentials prevailing in the literature. We also find that inflation in all models is more robust for larger values of the initial energy scale.
We consider the robustness of small-field inflation in the presence of scalar field inhomogeneities. Previous numerical work has shown that if the scalar potential is flat only over a narrow interval, such as in commonly considered inflection-point models, even small-amplitude inhomogeneities present at the would-be onset of inflation at $tau = tau_i$ can disrupt the accelerated expansion. In this paper, we parametrise and evolve the inhomogeneities from an earlier time $tau_{IC}$ at which the initial data were imprinted, and show that for a broad range of inflationary and pre-inflationary models, inflection-point inflation withstands initial inhomogeneities. We consider three classes of perturbative pre-inflationary solutions (corresponding to energetic domination by the scalar field kinetic term, a relativistic fluid, and isotropic negative curvature), and two classes of exact solutions to Einsteins equations with large inhomogeneities (corresponding to a stiff fluid with cylindrical symmetry, and anisotropic negative curvature). We derive a stability condition that depends on the Hubble scales $H(tau_ i)$ and $H(tau_{IC})$, and a few properties of the pre-inflationary cosmology. For initial data imprinted at the Planck scale, the absence of an inhomogeneous initial data problem for inflection-point inflation leads to a novel, lower limit on the tensor-to-scalar ratio.
As distinct from the black hole physics, the de Sitter thermodynamics is not determined by the cosmological horizon, the effective temperature differs from the Hawking temperature. In particular, the atom in the de Sitter universe experiences thermal activation corresponding to the local temperature, which is twice larger than the Hawking temperature, $T_{rm loc}=2T_{rm Hawking}$. The same double Hawking temperature describes the decay of massive scalar field in the de Sitter universe. The reason, why the local temperature is exactly twice the Hawking temperature, follows from the geometry of the de Sitter spacetime. The weakening of the role of the cosmological horizon in de Sitter universe is confirmed by considering Hawking radiation. We discuss the difference between the radiation of particles in the de Sitter spacetime and the Schwinger pair creation in the electric field. We use the stationary Painleve-Gullstrand metric for the de Sitter spacetime, where the particles are created by Hawking radiation from the cosmological horizon, and time independent gauge for the electric field. In these stationary frames the Hamiltonians and the energy spectra of massive particles look rather similar. However, the final results are essentially different. In case of Schwinger pair production the number density of the created pairs grows with time, while in the de Sitter vacuum the number density of the created pairs is finite. The latter suggests that Hawking radiation from the cosmological horizon does not lead to instability of the de Sitter vacuum. The other mechanisms of instability are required for the dynamical solution of the cosmological constant problem. We consider the possible role of the local temperature $T_{rm loc}=2T_{rm H}$ in the decay of the de Sitter space-time due to the energy exchange between the vacuum energy and relativistic matter with this temperature.
Self tuning is one of the few methods for dynamically cancelling a large cosmological constant and yet giving an accelerating universe. Its drawback is that it tends to screen all sources of energy density, including matter. We develop a model that tempers the self tuning so the dynamical scalar field still cancels an arbitrary cosmological constant, including the vacuum energy through any high energy phase transitions, without affecting the matter fields. The scalar-tensor gravitational action is simple, related to cubic Horndeski gravity, with a nonlinear derivative interaction plus a tadpole term. Applying shift symmetry and using the property of degeneracy of the field equations we find families of functions that admit de Sitter solutions with expansion rates that are independent of the magnitude of the cosmological constant and preserve radiation and matter dominated phases. That is, the method can deliver a standard cosmic history including current acceleration, despite the presence of a Planck scale cosmological constant.