Do you want to publish a course? Click here

High-Sensitivity 86GHz (3.5mm) VLBI Observations of M87: Deep Imaging of the Jet Base at a 10 Schwarzschild-Radius Resolution

116   0   0.0 ( 0 )
 Added by Kazuhiro Hada
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on results from new high-sensitivity, high-resolution 86GHz (3.5 millimeter) observations of the jet base in the nearby radio galaxy M87, obtained by the Very Long Baseline Array in conjunction with the Green Bank Telescope. The resulting image has a dynamic range exceeding 1500 to 1, the highest ever achieved for this jet at this frequency, resolving and imaging a detailed jet formation/collimation structure down to ~10 Schwarzschild radii (Rs). The obtained 86GHz image clearly confirms some important jet features known at lower frequencies, i.e., a wide-opening angle jet base, a limb-brightened intensity profile, a parabola-shape collimation profile and a counter jet. The limb-brightened structure is already well developed at < 0.2mas (< 28Rs, projected) from the core, where the corresponding apparent opening angle becomes as wide as ~100 degrees. The subsequent jet collimation near the black hole evolves in a complicated manner; there is a constricted structure at tens Rs from the core, where the jet cross section is locally shrinking. We suggest that an external pressure support from the inner part of radiatively-inefficient accretion flow may be dynamically important in shaping/confining the footprint of the magnetized jet. We also present the first VLBI 86GHz polarimetric experiment for this source, where a highly polarized (~20%) feature is detected near the jet base, indicating the presence of a well-ordered magnetic field. As a by-product, we additionally report a 43/86 GHz polarimetric result for our calibrator 3C 273 suggesting an extreme rotation measure near the core.



rate research

Read More

We report on the detailed radio status of the M87 jet during the Very-High-Energy (VHE) gamma-ray flaring event in April 2010, obtained from high-resolution, multi-frequency, phase-referencing VLBA observations. We especially focus on the properties for the jet base (the radio core) and the peculiar knot HST-1, which are currently favored as the gamma-ray emitting sites. During the VHE flaring event, the HST-1 region remains stable in terms of its structure and flux density in the optically thin regime above 2GHz, being consistent with no signs of enhanced activities reported at X-ray for this feature. The radio core shows an inverted spectrum at least up to 43GHz during this event. Astrometry of the core position, which is specified as ~20Rs from the central engine in our previous study, shows that the core position is stable on a level of 4Rs. The core at 43 and 22GHz tends to show slightly (~10%) higher flux level near the date of the VHE flux peak compared with the epochs before/after the event. The size of the 43-GHz core is estimated to be ~17Rs, which is close to the size of the emitting region suggested from the observed time scale of rapid variability at VHE. These results tend to favor the scenario that the VHE gamma-ray flare in 2010 April is associated with the radio core.
We report the development of a semi-automatic pipeline for the calibration of 86 GHz full-polarization observations performed with the Global Millimeter-VLBI array (GMVA) and describe the calibration strategy followed in the data reduction. Our calibration pipeline involves non-standard procedures, since VLBI polarimetry at frequencies above 43 GHz is not yet well established. We also present, for the first time, a full-polarization global-VLBI image at 86 GHz (source 3C 345), as an example of the final product of our calibration pipeline, and discuss the effect of instrumental limitations on the fidelity of the polarization images. Our calibration strategy is not exclusive for the GMVA, and could be applied on other VLBI arrays at millimeter wavelengths. The use of this pipeline will allow GMVA observers to get fully-calibrated datasets shortly after the data correlation.
115 - K. Hada , M. Giroletti , M. Kino 2014
We report our intensive radio monitoring observations of the jet in M87 with the VLBI Exploration of Radio Astrometry (VERA) and the European VLBI Network (EVN) from February 2011 to October 2012, together with contemporaneous high-energy gamma-ray light curves obtained by the Fermi-LAT. During this period, an elevated level of the M87 flux is reported at VHE gamma rays. We detected a remarkable increase of the radio flux density from the unresolved jet base (radio core) with VERA at 22 and 43GHz coincident with the VHE activity. Meanwhile, we confirmed with EVN at 5GHz that HST-1 (an alternative gamma-ray production candidate site) remained quiescent in terms of its flux density and structure. These results in the radio bands strongly suggest that the VHE gamma-ray activity in 2012 originates in the jet base within 0.03pc or 56 Schwarzschild radii from the central supermassive black hole. We further conducted VERA astrometry for the M87 core during the flaring period, and detected core shifts between 22 and 43GHz. We also discovered a clear frequency-dependent evolution of the radio core flare at 43, 22 and 5GHz; the radio flux density increased more rapidly at higher frequencies with a larger amplitude, and the light curves clearly showed a time-lag between the peaks at 22 and 43GHz. This indicates that a new radio-emitting component was created near the black hole in the period of the VHE event, and then propagated outward with progressively decreasing synchrotron opacity. By combining these results, we estimated an apparent speed of the newborn component, and derived a sub-luminal speed of less than ~0.2c. This value is significantly slower than the super-luminal (~1.1c) features that appeared from the core during the prominent VHE flaring event in 2008, suggesting that the stronger VHE activity can be associated with the production of the higher Lorentz factor jet.
101 - K. Hada , M. Giroletti , M. Kino 2014
The nearby radio galaxy M87 offers a unique opportunity for exploring the connection between gamma-ray production and jet formation at an unprecedented linear resolution. However, the origin and location of the gamma-rays in this source is still elusive. Based on previous radio/TeV correlation events, the unresolved jet base (radio core) and the peculiar knot HST-1 at >120 pc from the nucleus are proposed as candidate site(s) of gamma-ray production. Here we report our intensive, high-resolution radio monitoring observations of the M87 jet with the VLBI Exploration of Radio Astrometry (VERA) and the European VLBI Network (EVN) from February 2011 to October 2012. During this period, an elevated level of the M87 flux is reported at TeV with VERITAS. We detected a remarkable flux increase in the radio core with VERA at 22/43 GHz coincident with the VHE activity. Meanwhile, HST-1 remained quiescent in terms of its flux density and structure at radio. These results strongly suggest that the TeV gamma-ray activity in 2012 originates in the jet base within 0.03 pc (projected) from the central supermassive black hole.
Very long baseline interferometry (VLBI) imaging of radio emission from extragalactic jets provides a unique probe of physical mechanisms governing the launching, acceleration, and collimation of relativistic outflows. The two-dimensional structure and kinematics of the jet in M,87 (NGC,4486) have been studied by applying the Wavelet-based Image Segmentation and Evaluation (WISE) method to 11 images obtained from multi-epoch Very Long Baseline Array (VLBA) observations made in January-August 2007 at 43 GHz ($lambda = 7$ mm). The WISE analysis recovers a detailed two-dimensional velocity field in the jet in M,87 at sub-parsec scales. The observed evolution of the flow velocity with distance from the jet base can be explained in the framework of MHD jet acceleration and Poynting flux conversion. A linear acceleration regime is observed up to $z_{obs} sim 2$,mas. The acceleration is reduced at larger scales, which is consistent with saturation of Poynting flux conversion. Stacked cross correlation analysis of the images reveals a pronounced stratification of the flow. The flow consists of a slow, mildly relativistic layer (moving at $beta sim 0.5,c$), associated either with instability pattern speed or an outer wind, and a fast, accelerating stream line (with $beta sim 0.92$, corresponding to a bulk Lorentz factor $gamma sim 2.5$). A systematic difference of the apparent speeds in the northern and southern limbs of the jet is detected, providing evidence for jet rotation. The angular velocity of the magnetic field line associated with this rotation suggests that the jet in M87 is launched in the inner part of the disk, at a distance $r_0 sim 5, R_mathrm{s}$ from the central engine. The combined results of the analysis imply that MHD acceleration and conversion of Poynting flux to kinetic energy play the dominant roles in collimation and acceleration of the flow in M,87.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا