Statistical modeling of the fluid dual to Boulware-Deser Black hole


Abstract in English

In this work we study the statistical and thermodynamic properties of the horizon fluid corresponding to the Boulware-Deser (BD) black hole of Einstein-Gauss-Bonnet (EGB) gravity. Using mean field theory, we show explicitly that the BD fluid exhibits the coexistence of two phases, a BEC and a non-condensed phase corresponding to the Einstein term and the Gauss-Bonnet term in the gravity action, respectively. In the fluid description, the high-energy corrections associated to Gauss-Bonnet gravity are modeled as excitations of the fluid medium. We provide statistical modeling of the excited part of the fluid and explicitly show that it is characterized by a generalized dispersion relation which in $D=6$ dimensions corresponds to a non-relativistic fluid. We also shed light on the ambiguity found in the literature regarding the expression of the entropy of the horizon fluid. We provide a general prescription to obtain the entropy and show that it is indeed given by Wald entropy.

Download