Spatial frequencies associated with the latitudinal structures of ionospheric currents seen by CHAMP satellite


Abstract in English

The CHAMP magnetic field variations during international quiet days of low solar activity period 2008-2009 are investigated. The present paper reports the existence of frequency-peaks < 20 mHz in the compressional component of the magnetic field in almost all CHAMP passes. The magnetic field variations associated with these frequencies have amplitude of a few tens of nT during daytime. The geomagnetic activity and interplanetary magnetic field parameters were observed to be low during the period of study. The spectral powers of the observed frequencies show no dependence on solar wind velocity and cone angle; hence the reported frequencies are not related to the geomagnetic pulsations. For frequency-peaks <15 mHz, strong local-time dependence is observed with maximum power near noon and minimum at night. The longitudinal and seasonal variations of the powers of these frequency-peaks match well with those of the equator-to-middle latitude ionospheric currents derived by the earlier studies. As a polar Low-Earth-Orbiting (LEO) satellite spans the entire range of latitudes within few minutes, it monitors the geomagnetic field variations caused by the quiet-time ionospheric currents flowing at different latitudes. This can result in certain frequencies in the magnetic field recorded by LEO satellites. We demonstrate that the frequencies <10mHz are mainly due to the latitudinal structure of the equatorial electrojet. The observed frequencies in CHAMP data are therefore attributed to the latitudinal structures of the ionospheric currents that are monitored only by the polar LEO satellites and are found to alter the observations of geomagnetic pulsations (Pc4-5 and Pi2) significantly.

Download