Pattern generation by dissipative parametric instability


Abstract in English

Nonlinear instabilities are responsible for spontaneous pattern formation in a vast number of natural and engineered systems ranging from biology to galaxies build-up. We propose a new instability mechanism leading to pattern formation in spatially extended nonlinear systems based on a periodic antiphase modulation of spectrally-dependent losses arranged in a zig-zag way: an effective filtering is imposed at symmetrically located wavenumbers k and -k in alternating order. The properties of the dissipative parametric instability differ from the features of the both key classical concepts of modulation instabilities: the Benjamin-Feir, and the Faraday instability. We demonstrate how dissipative parametric instability can lead to the formation of stable patterns in one and two-dimensional systems. The proposed instability mechanism is generic and can naturally occur or can be implemented in various physical systems.

Download