Do you want to publish a course? Click here

Ultrasensitive mechanical detection of magnetic moment using a commercial disk drive write head

78   0   0.0 ( 0 )
 Added by Christian Degen
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Sensitive detection of weak magnetic moments is an essential capability in many areas of nanoscale science and technology, including nanomagnetism, quantum readout of spins, and nanoscale magnetic resonance imaging. Here, we show that the write head of a commercial hard drive may enable significant advances in nanoscale spin detection. By approaching a sharp diamond tip to within 5 nm from the pole and measuring the induced diamagnetic moment with a nanomechanical force transducer, we demonstrate a spin sensitivity of 0.032 Bohr magnetons per root Hz, equivalent to 21 proton magnetic moments. The high sensitivity is enabled in part by the poles strong magnetic gradient of up to 28 million Tesla per meter and in part by the absence of non-contact friction due to the extremely flat writer surface. In addition, we demonstrate quantitative imaging of the pole field with about 10 nm spatial resolution. We foresee diverse applications for write heads in experimental condensed matter physics, especially in spintronics, ultrafast spin manipulation, and mesoscopic physics.



rate research

Read More

Since the advent of atomic force microscopy, mechanical resonators have been used to study a wide variety of phenomena, such as the dynamics of individual electron spins, persistent currents in normal metal rings, and the Casimir force. Key to these experiments is the ability to measure weak forces. Here, we report on force sensing experiments with a sensitivity of 12 zN Hz^(-1/2) at a temperature of 1.2 K using a resonator made of a carbon nanotube. An ultra-sensitive method based on cross-correlated electrical noise measurements, in combination with parametric downconversion, is used to detect the low-amplitude vibrations of the nanotube induced by weak forces. The force sensitivity is quantified by applying a known capacitive force. This detection method also allows us to measure the Brownian vibrations of the nanotube down to cryogenic temperatures. Force sensing with nanotube resonators offers new opportunities for detecting and manipulating individual nuclear spins as well as for magnetometry measurements.
252 - Hua-Jun Chen , Ka-Di Zhu 2013
We propose a novel optical method to detect the existence of Majorana fermions at the ends of the semiconductor nanowire via the coupling to an electron spin trapped on a carbon nanotube resonator under the control of a strong pump field and a weak probe field. The coupling strength of Majorana fermion to the spin in the carbon nanotube and the decay rate of the Majorana fermion can be easily measured from the probe absorption spectrum via manipulating the spin-mechanical coupling in the suspended carbon nanotube. The scheme proposed here will open a good perspective for its applications in all-optical controlled Majorana fermion-based quantum computation and quantum information processing.
Building nanotechnological analogues of naturally occurring magnetic structures has proven to be a powerful approach to studying topics like geometry-induced magnetic frustration and to provide model systems for statistical physics. Moreover, it practically allows to engineer novel physical properties by realizing artificial lattice geometries that are not accessible via natural crystallization or chemical synthesis. This has been accomplished with great success in the field of two-dimensional artificial spin ice systems with important branches reaching into the field of magnetic logic devices. Although first proposals have been made to advance into three dimensions (3D), established nanofabrication pathways based on electron beam lithography have not been adapted to obtain free-form 3D nanostructures. Here we demonstrate the direct-write fabrication of freestanding ferromagnetic 3D nano-architectures with full control over the degree of magnetic frustration. By employing micro-Hall sensing, we have determined the magnetic stray field generated by our free-form structures in an externally applied magnetic field and we have performed micromagnetic and macro-spin simulations to deduce the spatial magnetization profiles in the structures and analyze their switching behavior. Furthermore we show that the magnetic 3D elements can be combined with other 3D elements of different chemical composition and intrinsic material properties.
We report on the switching of the magnetic vortex core in a Pac-man disk using a magnetic field pulse, investigated via micromagnetic simulations. The minimum core switching field is reduced by 72 % compared to that of a circular disk with the same diameter and thickness. However, the core switches irregularly with respect to both the field pulse amplitude and duration. This irregularity is induced by magnetization oscillations which arise due to excitation of the spin waves when the core annihilates. We show that the core switching can be controlled with the assist magnetic field and by changing the waveform.
We have suspended an Al based single-electron transistor whose island can resonate freely between the source and drain leads forming the clamps. In addition to the regular side gate, a bottom gate with a larger capacitance to the SET island is placed underneath to increase the SET coupling to mechanical motion. The device can be considered as a doubly clamped Al beam that can transduce mechanical vibrations into variations of the SET current. Our simulations based on the orthodox model, with the SET parameters estimated from the experiment, reproduce the observed transport characteristics in detail.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا