Do you want to publish a course? Click here

Hall effect and Fermi surface reconstruction via electron pockets in the high-$T_c$ cuprates

117   0   0.0 ( 0 )
 Added by James Storey
 Publication date 2015
  fields Physics
and research's language is English
 Authors J.G. Storey




Ask ChatGPT about the research

The mechanism by which the Fermi surface of high-$T_c$ cuprates undergoes a dramatic change from a large hole-like barrel to small arcs or pockets on entering the pseudogap phase remains a question of fundamental importance. Here we calculate the normal-state Hall coefficient from the resonating-valence-bond spin-liquid model developed by Yang, Rice and Zhang. In this model, reconstruction of the Fermi surface occurs via an intermediate regime where the Fermi surface consists of both hole- and electron-like pockets. We find that the doping $(x)$ dependence of the Hall number transitions from $1+x$ to $x$ over this narrow doping range. At low temperatures, a switch from a downturn to an upturn in the Hall coefficient signals the departure of the electron-like pockets from the Fermi surface.



rate research

Read More

High-temperature superconductivity occurs as copper oxides are chemically tuned to have a carrier concentration intermediate between their metallic state at high doping and their insulating state at zero doping. The underlying evolution of the electron system in the absence of superconductivity is still unclear and a question of central importance is whether it involves any intermediate phase with broken symmetry. The Fermi surface of underdoped YBa2Cu3Oy and YBa2Cu4O8 was recently shown to include small pockets in contrast with the large cylinder characteristic of the overdoped regime1, pointing to a topological change in the Fermi surface. Here we report the observation of a negative Hall resistance in the magnetic field-induced normal state of YBa2Cu3Oy and YBa2Cu4O8, which reveals that these pockets are electron-like. We propose that electron pockets arise most likely from a reconstruction of the Fermi surface caused by the onset of a density-wave phase, as is thought to occur in the electron-doped materials near the onset of antiferromagnetic order Comparison with materials of the La2CuO4 family that exhibit spin/charge density-wave order suggests that a Fermi surface reconstruction also occurs in those materials, pointing to a generic property of high-Tc superconductors.
Fermi surface (FS) topology is a fundamental property of metals and superconductors. In electron-doped cuprate Nd2-xCexCuO4 (NCCO), an unexpected FS reconstruction has been observed in optimal- and over-doped regime (x=0.15-0.17) by quantum oscillation measurements (QOM). This is all the more puzzling because neutron scattering suggests that the antiferromagnetic (AFM) long-range order, which is believed to reconstruct the FS, vanishes before x=0.14. To reconcile the conflict, a widely discussed external magnetic field-induced AFM long-range order in QOM explains the FS reconstruction as an extrinsic property. Here, we report angle-resolved photoemission (ARPES) evidence of FS reconstruction in optimal- and over-doped NCCO. The observed FSs are in quantitative agreement with QOM, suggesting an intrinsic FS reconstruction without field. This reconstructed FS, despite its importance as a basis to understand electron-doped cuprates, cannot be explained under the traditional scheme. Furthermore, the energy gap of the reconstruction decreases rapidly near x=0.17 like an order parameter, echoing the quantum critical doping in transport. The totality of the data points to a mysterious order between x=0.14 and 0.17, whose appearance favors the FS reconstruction and disappearance defines the quantum critical doping. A recent topological proposal provides an ansatz for its origin.
Pulsed field measurements of the Hall resistivity and magnetoresistance of underdoped YBa2Cu4O8 are analyzed self-consistently using a simple model based on coexisting electron and hole carriers. The resultant mobilities and Hall numbers are found to vary markedly with temperature. The conductivity of the hole carriers drops by one order of magnitude below 30 K, explaining the absence of quantum oscillations from these particular pockets. Meanwhile the Hall coefficient of the electron carriers becomes strongly negative below 50 K. The overall quality of the fits not only provides strong evidence for Fermi-surface reconstruction in Y-based cuprates, it also strongly constrains the type of reconstruction that might be occurring.
Reconstruction of the Fermi surface of high-temperature superconducting cuprates in the pseudogap state is analyzed within nearly exactly solvable model of the pseudogap state, induced by short-range order fluctuations of antiferromagnetic (AFM, spin density wave (SDW), or similar charge density wave (CDW)) order parameter, competing with superconductivity. We explicitly demonstrate the evolution from Fermi arcs (on the large Fermi surface) observed in ARPES experiments at relatively high temperatures (when both the amplitude and phase of density waves fluctuate randomly) towards formation of typical small electron and hole pockets, which are apparently observed in de Haas - van Alfen and Hall resistance oscillation experiments at low temperatures (when only the phase of density waves fluctuate, and correlation length of the short-range order is large enough). A qualitative criterion for quantum oscillations in high magnetic fields to be observable in the pseudogap state is formulated in terms of cyclotron frequency, correlation length of fluctuations and Fermi velocity.
We calculate the diffusion thermoelectric power of high-Tc cuprates using the resonating-valence-bond spin-liquid model developed by Yang, Rice and Zhang (YRZ). In this model, reconstruction of the energy-momentum dispersion results in a pseudogap in the density of states that is heavily asymmetric about the Fermi level. The subsequent asymmetry in the spectral conductivity is found to account for the large magnitude and temperature dependence of the thermopower observed in underdoped cuprates. In addition we find evidence in experimental data for electron pockets in the Fermi surface, arising from a YRZ-like reconstruction, near the onset of the pseudogap in the slightly overdoped regime.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا