Do you want to publish a course? Click here

Radiative processes of uniformly accelerated entangled atoms

188   0   0.0 ( 0 )
 Added by Gabriel Menezes
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study radiative processes of uniformly accelerated entangled atoms, interacting with an electromagnetic field prepared in the Minkowski vacuum state. We discuss the structure of the rate of variation of the atomic energy for two atoms travelling in different hyperbolic world lines. We identify the contributions of vacuum fluctuations and radiation reaction to the generation of entanglement as well as to the decay of entangled states. Our results resemble the situation in which two inertial atoms are coupled individually to two spatially separated cavities at different temperatures. In addition, for equal accelerations we obtain that one of the maximally entangled antisymmetric Bell state is a decoherence-free state.



rate research

Read More

We investigate the radiative processes of accelerated entangled two-level systems. Using first-order perturbation theory, we evaluate transition rates of two entangled Unruh-DeWitt detectors rotating with the same angular velocity interacting with a massive scalar field. Decay processes for arbitrary radius, angular velocities, and energy gaps are analyzed. We discuss the mean-life of entangled states and entanglement harvesting and degradation.
142 - G. Menezes , N. F. Svaiter 2015
We investigate radiative processes of inertial two-level atoms in an entangled state interacting with a quantum electromagnetic field. Our intention is to clarify and to analyze the contributions of vacuum fluctuations and radiation reaction to the decay rate of the entangled state. The possible relevance of the findings in the present work is discussed.
157 - G. Menezes 2015
We consider radiative processes of a quantum system composed by two identical two-level atoms in a black-hole background. We assume that these identical two-level atoms are placed at fixed radial distances outside a Schwarzschild black hole and interacting with a quantum electromagnetic field prepared in one of the usual vacuum states, namely the Boulware, Unruh or the Hartle-Hawking vacuum states. We study the structure of the rate of variation of the atomic energy. The intention is to identify in a quantitative way the contributions of vacuum fluctuations and radiation reaction to the entanglement generation between the atoms as well as the degradation of entangled states in the presence of an event horizon. We find that for a finite observation time the atoms can become entangled for the case of the field in the Boulware vacuum state, even if they are initially prepared in a separable state. In addition, the rate of variation of atomic energy is not well behaved at the event horizon due to the behavior of the proper accelerations of the atoms. We show that the thermal nature of the Hartle-Hawking and Unruh vacuum state allows the atoms to get entangled even if they were initially prepared in the separable ground state.
In this work we discuss the process of measurements by a detector in an uniformly accelerated rectilinear motion, interacting linearly with a massive scalar field. The detector model for field quanta is a point-like system with a ground state and a continuum of unbounded states. We employ the Glauber theory of photodetection. In an uniformly accelerated reference frame, the detector, interacting with the field prepared in an arbitrary state of the Rindler Fock space, is excited only by absorption processes. For the uniformly accelerated detector prepared in the ground state, we evaluate the transition probability rate in three important situations. In the first one the field is prepared in an arbitrary state of $n$-Rindler quanta, then we consider a thermal Rindler state at a given temperature $beta^{-1}$, and finally the case in which the state of the field is taken to be the Minkowski vacuum. The well-known result that the latter excitation rates are equal is recovered. Accelerated or inertial observer interpretations of the measurements performed by the accelerated detector is presented. Finally, we investigate the behaviour of the detector in a frame which is inertial in the remote past but in the far future becomes uniformly accelerated. For the massless case, we obtain that the transition probability rate of the detector in the far future is tantamount to the analogous quantity for the detector at rest in a non-inertial reference frame interacting with the field prepared in an usual thermal state.
The analysis of uniformly longitudinally extended detector is performed and it is shown that the response of such a detector does not differ from the response of the Unruh detector, but the its excitation is caused not by the thermal bath, but by interaction with the fluctuations of the quantum field by virtual quanta.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا