Do you want to publish a course? Click here

The influence of dense gas rings on the dynamics of a stellar disk in the Galactic center

68   0   0.0 ( 0 )
 Added by Alessandro Trani
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Galactic center hosts several hundred early-type stars, about 20% of which lie in the so-called clockwise disk, while the remaining 80% do not belong to any disks. The circumnuclear ring (CNR), a ring of molecular gas that orbits the supermassive black hole (SMBH) with a radius of 1.5 pc, has been claimed to induce precession and Kozai-Lidov oscillations onto the orbits of stars in the innermost parsec. We investigate the perturbations exerted by a gas ring on a nearly-Keplerian stellar disk orbiting a SMBH by means of combined direct N-body and smoothed particle hydrodynamics simulations. We simulate the formation of gas rings through the infall and disruption of a molecular gas cloud, adopting different inclinations between the infalling gas cloud and the stellar disk. We find that a CNR-like ring is not efficient in affecting the stellar disk on a timescale of 3 Myr. In contrast, a gas ring in the innermost 0.5 pc induces precession of the longitude of the ascending node Omega, significantly affecting the stellar disk inclination. Furthermore, the combined effect of two-body relaxation and Omega-precession drives the stellar disk dismembering, displacing the stars from the disk. The impact of precession on the star orbits is stronger when the stellar disk and the inner gas ring are nearly coplanar. We speculate that the warm gas in the inner cavity might have played a major role in the evolution of the clockwise disk.



rate research

Read More

91 - Jens Kauffmann 2016
We present the first systematic study of the density structure of clouds found in a complete sample covering all major molecular clouds in the Central Molecular Zone (CMZ; inner $sim{}200~rm{}pc$) of the Milky Way. This is made possible by using data from the Galactic Center Molecular Cloud Survey (GCMS), the first study resolving all major molecular clouds in the CMZ at interferometer angular resolution. We find that many CMZ molecular clouds have unusually shallow density gradients compared to regions elsewhere in the Milky Way. This is possibly a consequence of weak gravitational binding of the clouds. The resulting relative absence of dense gas on spatial scales $sim{}0.1~rm{}pc$ is probably one of the reasons why star formation (SF) in dense gas of the CMZ is suppressed by a factor $sim{}10$, compared to solar neighborhood clouds. Another factor suppressing star formation are the high SF density thresholds that likely result from the observed gas kinematics. Further, it is possible but not certain that the star formation activity and the cloud density structure evolve systematically as clouds orbit the CMZ.
Within a few parsecs around the central Black Hole Sgr A*, chemistry in the dense molecular cloud material of the circumnuclear disk (CND) can be affected by many energetic phenomena such as high UV-flux from the massive central star cluster, X-rays from Sgr A*, shock waves, and an enhanced cosmic-ray flux. Recently, spectroscopic surveys with the IRAM 30 meter and the APEX 12 meter telescopes of substantial parts of the 80--500 GHz frequency range were made toward selected positions in and near the CND. These datasets contain lines from the molecules HCN, HCO$^+$, HNC, CS, SO, SiO, CN, H$_2$CO, HC$_3$N, N$_2$H$^+$, H$_3$O$^+$ and others. We conduct Large Velocity Gradient analyses to obtain column densities and total hydrogen densities, $n$, for each species in molecular clouds located in the southwest lobe of CND. The data for the above mentioned molecules indicate 10$^5,$cm$^{-3} lesssim n <10^6,$cm$^{-3}$, which shows that the CND is tidally unstable. The derived chemical composition is compared with a chemical model calculated using the UCL_CHEM code that includes gas and grain reactions, and the effects of shock waves. Models are run for varying shock velocities, cosmic-ray ionization rates, and number densities. The resulting chemical composition is fitted best to an extremely high value of cosmic-ray ionization rate $zeta sim 10^{-14},$s$^{-1}$, 3 orders of magnitude higher than the value in regular Galactic molecular clouds, if the pre-shock density is $n=10^5,$cm$^{-3}$.
The population of young stars near the Supermassive black hole (SMBH) in the Galactic Center (GC) has presented an unexpected challenge to theories of star formation. Kinematics measurements of these stars have revealed a stellar disk structure (with an apparent 20% disk membership) that has provided important clues to the origin of these mysterious young stars. However many of the apparent disk properties are difficult to explain, including the low disk membership fraction and the high eccentricities, given the youth of this population. Thus far, all efforts to derive the properties of this disk have made the simplifying assumption that stars at the GC are single stars. Nevertheless, stellar binaries are prevalent in our Galaxy, and recent investigations suggested that they may also be abundant in the Galactic Center. Here we show that binaries in the disk can largely alter the apparent orbital properties of the disk. The motion of binary members around each other adds a velocity component, which can be comparable to the magnitude of the velocity around the SMBH in the GC. Thus neglecting the contribution of binaries can significantly vary the inferred stars orbital properties. While the disk orientation is unaffected the apparent disks 2D width is increased to about 11.2deg, similar to the observed width. For a population of stars orbiting the SMBH with zero eccentricity, unaccounted for binaries will create a wide apparent eccentricity distribution with an average of 0.23.This is consistent with the observed average eccentricity of the stars in the disk. We suggest that this high eccentricity value, which poses a theoretical challenge, may be an artifact of binary stars. Finally our results suggest that the actual disk membership might be significantly higher than the one inferred by observations that ignore the contribution of binaries, alleviating another theoretical challenge.
Utilizing the Atacama Large Millimeter/submillimeter Array (ALMA), we present CS line maps in five rotational lines ($J_{rm u}=7, 5, 4, 3, 2$) toward the circumnuclear disk (CND) and streamers of the Galactic Center. Our primary goal is to resolve the compact structures within the CND and the streamers, in order to understand the stability conditions of molecular cores in the vicinity of the supermassive black hole (SMBH) Sgr A*. Our data provide the first homogeneous high-resolution ($1.3 = 0.05$ pc) observations aiming at resolving density and temperature structures. The CS clouds have sizes of $0.05-0.2$ pc with a broad range of velocity dispersion ($sigma_{rm FWHM}=5-40$ km s$^{-1}$). The CS clouds are a mixture of warm ($T_{rm k}ge 50-500$ K, n$_{rm H_2}$=$10^{3-5}$ cm$^{-3}$) and cold gas ($T_{rm k}le 50$ K, n$_{rm H_2}$=$10^{6-8}$ cm$^{-3}$). A stability analysis based on the unmagnetized virial theorem including tidal force shows that $84^{+16}_{-37}$ % of the total gas mass is tidally stable, which accounts for the majority of gas mass. Turbulence dominates the internal energy and thereby sets the threshold densities $10-100$ times higher than the tidal limit at distance $ge 1.5$ pc to Sgr A*, and therefore, inhibits the clouds from collapsing to form stars near the SMBH. However, within the central $1.5$ pc, the tidal force overrides turbulence and the threshold densities for a gravitational collapse quickly grow to $ge 10^{8}$ cm$^{-3}$.
124 - N. Harada , D. Riquelme , S. Viti 2015
The circumnuclear disk (CND) of the Galactic Center is exposed to many energetic phenomena coming from the supermassive black hole Sgr A* and stellar activities. These energetic activities can affect the chemical composition in the CND by the interaction with UV-photons, cosmic-rays, X-rays, and shock waves. We aim to constrain the physical conditions present in the CND by chemical modeling of observed molecular species detected towards it. We analyzed a selected set of molecular line data taken toward a position in the southwest lobe of the CND with the IRAM 30m and APEX 12-meter telescopes and derived the column density of each molecule using a large velocity gradient (LVG) analysis. The determined chemical composition is compared with a time-dependent gas-grain chemical model based on the UCL_CHEM code that includes the effects of shock waves with varying physical parameters. Molecules such as CO, HCN, HCO$^+$, HNC, CS, SO, SiO, NO, CN, H$_2$CO, HC$_3$N, N$_2$H$^+$ and H$_3$O$^+$ are detected and their column densities are obtained. Total hydrogen densities obtained from LVG analysis range between $2 times 10^4$ and $1 times 10^6,$cm$^{-3}$ and most species indicate values around several $times 10^5,$cm$^{-3}$, which are lower than values corresponding to the Roche limit, which shows that the CND is tidally unstable. The chemical models show good agreement with the observations in cases where the density is $sim10^4,$cm$^{-3}$, the cosmic-ray ionization rate is high, $>10^{-15} ,$s$^{-1}$, or shocks with velocities $> 40,$km s$^{-1}$ have occurred. Comparison of models and observations favors a scenario where the cosmic-ray ionization rate in the CND is high, but precise effects of other factors such as shocks, density structures, UV-photons and X-rays from the Sgr A* must be examined with higher spatial resolution data.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا