Do you want to publish a course? Click here

Simultaneous emergence of superconductivity, inter-pocket scattering and nematic fluctuation in potassium-coated FeSe superconductor

123   0   0.0 ( 0 )
 Added by Yan Zhang
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Superconductivity originates from pairing of electrons. Pairing channel on Fermi surface and pairing glue are thus two pivotal issues for understanding a superconductor. Recently, high-temperature superconductivity over 40 K was found in electron-doped FeSe superconductors including K$_x$Fe$_{2-y}$Se$_2$, Li$_{0.8}$Fe$_{0.2}$OHFeSe, and 1 monolayer FeSe thin film. However, their pairing mechanism remains controversial. Here, we studied the systematic evolution of electronic structure in potassium-coated FeSe single crystal. The doping level is controlled precisely by in situ evaporating potassium onto the sample surface. We found that the superconductivity emerges when the inter-pocket scattering between two electron pockets is turned on by a Lifshitz transition of Fermi surface. The nematic order suppresses remarkably at the same doping and strong nematic fluctuation remains in a wide doping range of the phase diagram. Our results suggest an underlying correlation among superconductivity, inter-pocket scattering, and nematic fluctuation in electron-doped FeSe superconductors.



rate research

Read More

The electronic structure of the enigmatic iron-based superconductor FeSe has puzzled researchers since spectroscopic probes failed to observe the expected electron pocket at the $Y$ point in the 1-Fe Brillouin zone. It has been speculated that this pocket, essential for an understanding of the superconducting state, is either absent or incoherent. Here, we perform a theoretical study of the preferred nematic order originating from nearest-neighbor Coulomb interactions in an electronic model relevant for FeSe. We find that at low temperatures the dominating nematic components are of inter-orbital $d_{xz}-d_{xy}$ and $d_{yz}-d_{xy}$ character, with spontaneously broken amplitudes for these two components. This inter-orbital nematic order naturally leads to distinct hybridization gaps at the $X$ and $Y$ points of the 1-Fe Brillouin zone, and may thereby produce highly anisotropic Fermi surfaces with only a single electron pocket at one of these momentum-space locations. The associated superconducting gap structure obtained with the generated low-energy electronic band structure from spin-fluctuation mediated pairing agrees well with that measured experimentally. Finally, from a comparison of the computed spin susceptibility to available neutron scattering data, we discuss the necessity of additional self-energy effects, and explore the role of orbital-dependent quasiparticle weights as a minimal means to include them.
Superconductivity in FeSe has recently attracted a great deal of attention because it emerges out of an electronic nematic state of elusive character. Here we study both the electronic normal state and the superconducting gap structure using heat-capacity measurements on high-quality single crystals. The specific-heat curve, from 0.4 K to Tc = 9.1 K, is found to be consistent with a recent gap determination using Bogoliubov quasiparticle interference [P. O. Sprau et al., Science 357, 75 (2017)], however only if nodes are introduced on either the electron or the hole Fermi-surface sheets. Our analysis, which is consistent with quantum-oscillation measurements, relies on the presence of only two bands, and thus the fate of the theoretically predicted second electron pocket remains mysterious.
We present a comprehensive study of the evolution of the nematic electronic structure of FeSe using high resolution angle-resolved photoemission spectroscopy (ARPES), quantum oscillations in the normal state and elastoresistance measurements. Our high resolution ARPES allows us to track the Fermi surface deformation from four-fold to two-fold symmetry across the structural transition at ~87 K which is stabilized as a result of the dramatic splitting of bands associated with dxz and dyz character. The low temperature Fermi surface is that a compensated metal consisting of one hole and two electron bands and is fully determined by combining the knowledge from ARPES and quantum oscillations. A manifestation of the nematic state is the significant increase in the nematic susceptibility as approaching the structural transition that we detect from our elastoresistance measurements on FeSe. The dramatic changes in electronic structure cannot be explained by the small lattice effects and, in the absence of magnetic fluctuations above the structural transition, points clearly towards an electronically driven transition in FeSe stabilized by orbital-charge ordering.
Superconductivity was recently discovered in rhombohedral trilayer graphene (RTG) in the absence of a moire potential. Intringuigly, superconductivity is observed proximate to a metallic state with reduced isospin symmetry, but it remains unknown whether this is a coincidence or a key ingredient for superconductivity. Using a Hartree-Fock analysis and constraints from experiments, we argue that the symmetry breaking is inter-valley coherent (IVC) in nature. We evaluate IVC fluctuations as a possible pairing glue, and find that they lead to unconventional superconductivity which is $p$-wave when fluctuations are strong. We further elucidate how the inter-valley Hunds coupling determines the spin-structure of the IVC ground state and breaks the degeneracy between spin-singlet and triplet superconductivity. Intriguingly, if the normal state is spin-unpolarized, we find that a ferromagnetic Hunds coupling favors spin-singlet superconductivity, in agreement with experiments. Instead, if the normal state is spin-polarized, then IVC fluctuations lead to spin-triplet pairing.
147 - K. Nakayama , T. Sato , P. Richard 2009
We have performed high-resolution angle-resolved photoemission spectroscopy of iron-chalcogenide superconductor Fe1.03Te0.7Se0.3 (Tc = 13 K) to investigate the electronic structure relevant to superconductivity. We observed a hole- and an electron-like Fermi surfaces at the Brillouin zone center and corner, respectively, which are nearly nested by the Q~(pi, pi) wave vector. We do not find evidence for the nesting instability with Q~(pi+delta, 0) reminiscent of the antiferromagnetic order in the parent compound Fe1+yTe. We have observed an isotropic superconducting gap along the hole-like Fermi surface with the gap size Delta of ~4 meV (2Delta/kBTc~7), demonstrating the strong-coupling nature of the superconductivity. The observed similarity of low-energy electronic excitations between iron-chalcogenide and iron-arsenide superconductors strongly suggests that common interactions which involve Q~(pi, pi) scattering are responsible for the superconducting pairing.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا