Intrinsic limit to electron spin coherence in InGaAs quantum dots featuring strain-induced nuclear dispersion


Abstract in English

The Zeeman-split spin-states of a single electron confined in a self-assembled quantum dot provide an optically-accessible spin qubit. For III-V materials the nuclear spins of the solid-state host provide an intrinsic noise source, resulting in electron-spin dephasing times of few nanoseconds. While a comprehensive study of electron-spin dynamics at low magnetic field has recently been carried out, what limits the electron coherence in these systems remains unclear, in part due to the dominant effect of measurement-induced dynamic polarisation of the nuclear bath. We develop an all-optical method to access the quantum dot spin-state without perturbing the nuclear environment. We use this method to implement Hahn-echo decoupling and reach the intrinsic limit to coherence set by inhomogeneous strain fields coupling to quadrupolar moments of the nuclear bath. These results indicate that the extension of electron spin coherence beyond this few-microsecond limit necessitates the reduction of strain-induced quadrupolar broadening in these materials.

Download