When a planet inspirals into its host star, it releases gravitational energy which is converted into an expanding bubble of hot plasma. We study the radiation from the bubble and show that it includes prompt optical-infrared emission and a subsequent radio afterglow. The prompt emission from M31 and Large Magellanic Cloud is detectable by optical-near infrared transient surveys with a large field of view. The subsequent radio afterglows are detectable for $10^{3-4}$~years. The event rate depends on uncertain parameters in the formation and dynamics of giant planets. Future observation of the rate will constrain related theoretical models. If the event rate is high (> a few events per year), the circumstellar disk must typically be massive as suggested by recent numerical simulations.