Itinerant ferromagnetism in 1D two-component Fermi gases


Abstract in English

We study a one-dimensional two-component atomic Fermi gas with an infinite intercomponent contact repulsion. It is found that adding an attractive resonant odd-wave interaction breaking the rotational symmetry one can make the ground state ferromagnetic. A promising system for the observation of this itinerant ferromagnetic state is a 1D gas of $^{40}$K atoms, where 3D $s$-wave and $p$-wave Feshbach resonances are very close to each other and the 1D confinement significantly reduces the inelastic decay.

Download