Multi-messenger astronomy is becoming the key to understanding the Universe from a comprehensive perspective. In most cases, the data and the technology are already in place, therefore it is important to provide an easily-accessible package that combines datasets from multiple telescopes at different wavelengths. In order to achieve this, we are working to produce a data analysis pipeline that allows the data reduction from different instruments without needing detailed knowledge of each observation. Ideally, the specifics of each observation are automatically dealt with, while the necessary information on how to handle the data in each case is provided by a tutorial that is included in the program. We first focus our project on the study of pulsars and their wind nebulae (PWNe) at radio and gamma-ray frequencies. In this way, we aim to combine time-domain and imaging datasets at two extremes of the electromagnetic spectrum. In addition, the emission has the same non-thermal origin in pulsars at radio and gamma-ray frequencies, and the population of electrons is believed to be the same at these energies in PWNe. The final goal of the project will be to unveil the properties of these objects by tracking their behaviour using all of the available multi-wavelength data.