Do you want to publish a course? Click here

Suzaku observation of a high entropy cluster Abell 548W

82   0   0.0 ( 0 )
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Abell 548W, one of the galaxy clusters located in the Abell 548 region, has about an order of magnitude lower X-ray luminosity compared to ordinal clusters in view of the well known intracluster medium (ICM) temperature vs X-ray luminosity (kT-L_X) relation. The cluster hosts a pair of diffuse radio sources to the north west and north, both about 10 apart from the cluster center. They are candidate radio relics, frequently associated with merging clusters. A Suzaku deep observation with exposure of 84.4 ks was performed to search signatures for merging in this cluster. The XIS detectors successfully detected the ICM emission out to 16 from the cluster center. The temperature is ~3.6 keV around its center, and ~2 keV at the outermost regions. The hot region (~6 keV) aside the relic candidates shifted to the cluster center reported by XMM-Newton was not seen in the Suzaku data, although its temperature of 3.6 keV itself is higher than the average temperature of 2.5 keV around the radio sources. In addition, a signature of a cool (kT ~0.9 keV) component was found around the north west source. A marginal temperature jump at its outer-edge was also found, consistent with the canonical idea of shock acceleration origin of the radio relics. The cluster has among the highest central entropy of ~400 keV cm^2 and is one of the so-called low surface brightness clusters. Taking into account the fact that its shape itself is relatively circular and smooth and also its temperature structure is nearly flat, possible scenarios for merging is discussed.



rate research

Read More

We present analysis results for a nearby galaxy cluster Abell 1631 at $z~=~0.046$ using the X-ray observatory Suzaku. This cluster is categorized as a low X-ray surface brightness cluster. To study the dynamical state of the cluster, we conduct four-pointed Suzaku observations and investigate physical properties of the Mpc-scale hot gas associated with the A1631 cluster for the first time. Unlike relaxed clusters, the X-ray image shows no strong peak at the center and an irregular morphology. We perform spectral analysis and investigate the radial profiles of the gas temperature, density, and entropy out to approximately 1.5~Mpc in the east, north, west, and south directions by combining with the XMM-Newton data archive. The measured gas density in the central region is relatively low (${rm a~few} times~10^{-4}~{rm cm^{-3}}$) at the given temperature ($sim2.9~{rm keV}$) compared with X-ray-selected clusters. The entropy profile and value within the central region ($r<0.1~r_{200}$) are found to be flatter and higher ($gtrsim400~ {rm keV~cm}^2$). The observed bolometric luminosity is approximately three times lower than that expected from the luminosity-temperature relation in previous studies for relaxed clusters. These features are also observed in another low surface brightness cluster, Abell 76. The spatial distributions of galaxies and the hot gas appear to be different. The X-ray luminosity is relatively lower than that expected from the velocity dispersion. A post-merger scenario may explain the observed results.
150 - Yuanyuan Su 2016
Abell~1142 is a low-mass galaxy cluster at low redshift containing two comparable Brightest Cluster Galaxies (BCG) resembling a scaled-down version of the Coma Cluster. Our Chandra analysis reveals an X-ray emission peak, roughly 100 kpc away from either BCG, which we identify as the cluster center. The emission center manifests itself as a second beta-model surface brightness component distinct from that of the cluster on larger scales. The center is also substantially cooler and more metal rich than the surrounding intracluster medium (ICM), which makes Abell 1142 appear to be a cool core cluster. The redshift distribution of its member galaxies indicates that Abell 1142 may contain two subclusters with each containing one BCG. The BCGs are merging at a relative velocity of ~1200 km/s. This ongoing merger may have shock-heated the ICM from ~ 2 keV to above 3 keV, which would explain the anomalous L_X--T_X scaling relation for this system. This merger may have displaced the metal-enriched cool core of either of the subclusters from the BCG. The southern BCG consists of three individual galaxies residing within a radius of 5 kpc in projection. These galaxies should rapidly sink into the subcluster center due to the dynamical friction of a cuspy cold dark matter halo.
We report Suzaku observations of the galaxy cluster Abell 1795 that extend to r_200 ~ 2 Mpc, the radius within which the mean cluster mass density is 200 times the cosmic critical density. These observations are the first to probe the state of the intracluster medium in this object at r > 1.3 Mpc. We sample two disjoint sectors in the cluster outskirts (1.3 < r < 1.9 Mpc) and detect X-ray emission in only one of them to a limiting (3-sigma) soft X-ray surface brightness of B(0.5-2 keV) = 1.8 x 10^-12 erg s^-1 cm^-2 deg^-2, a level less than 20% of the cosmic X-ray background brightness. We trace the run of temperature with radius at r > 0.4 Mpc and find that it falls relatively rapidly (T ~ r^-0.9), reaching a value about one third of its peak at the largest radius we can measure it. Assuming the intracluster medium is in hydrostatic equilibrium and is polytropic, we find a polytropic index of 1.3 +0.3-0.2 and we estimate a mass of 4.1 +0.5-0.3 x 10^14 M_solar within 1.3 Mpc, somewhat (2.7-sigma) lower than that reported by previous observers. However, our observations provide evidence for departure from hydrostatic equilibrium at radii as small as r ~ 1.3 Mpc ~ r_500 in this apparently regular and symmetrical cluster.
We present the results of Suzaku observation of the radio halo cluster Abell 2319. The metal abundance in the central cool region is found to be higher than the surrounding region, which was not resolved in the former studies. We confirm that the line-of-sight velocities of the intracluster medium in the observed region are consistent with those of the member galaxies of entire A2319 and A2319A subgroup for the first time, though any velocity difference within the region is not detected. On the other hand, we do not find any signs of gas motion relevant to A2319B subgroup. Hard X-ray emission from the cluster is clearly detected, but its spectrum is likely thermal. Assuming a simple single temperature model for the thermal component, we find that the upper limit of the non-thermal inverse Compton component becomes $2.6 times 10^{-11}$ erg s$^{-1}$ cm$^{-2}$ in the 10-40 keV band, which means that the lower limit of the magnetic field is 0.19 $mu$G with the radio spectral index 0.92. Although the results slightly depend on the detailed spectral modeling, it is robust that the upper limit of the power-law component flux and lower limit of the magnetic field strength become $sim 3 times 10^{-11}$ erg s$^{-1}$ cm$^{-2}$ and $sim 0.2 mu$G, respectively. Considering the lack of a significant amount of very hot ($sim 20$ keV) gas and the strong bulk flow motion, it is more likely that the relativistic non-thermal electrons responsible for the radio halo are accelerated through the intracluster turbulence rather than the shocks.
The results of Suzaku observations of the outskirts of Abell 3395 including a large-scale structure filament toward Abell 3391 are presented. We measured temperature and abundance distributions from the southern outskirt of Abell 3395 to the north at the virial radius, where a filament structure has been found in the former X-ray and Sunyaev-Zeldovich effect observations between Abell 3391 and 3395. The overall temperature structure is consistent with the universal profile proposed by Okabe et al.(2014) for relaxed clusters except for the filament region. A hint of the ICM heating is found between the two clusters, which might be due to the interaction of them in the early phase of a cluster merger. Although we obtained relatively low metal abundance of $Z=0.169^{+0.164+0.009+0.018 }_{-0.150-0.004-0.015 }$ solar, where the first, second, and third errors are statistical, cosmic X-ray background systematic, and non X-ray background systematic, respectively, at the virial radius in the filament, our results are still consistent with the former results of other clusters ($Z sim 0.3$ solar) within errors. Therefore, our results are also consistent with the early enrichment scenario. We estimated Compton $y$ parameters only from X-ray results in the region between Abell 3391 and 3395 assuming a simple geometry. They are smaller than the previous SZ results with Planck satellite. The difference could be attributed to a more elaborate geometry such as a filament inclined to the line-of-sight direction, or underestimation of the X-ray temperature because of the unresolved multi-temperature structures or undetected hot X-ray emission of the shock heated gas.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا