Do you want to publish a course? Click here

Nearly optimal separations between communication (or query) complexity and partitions

62   0   0.0 ( 0 )
 Added by Robin Kothari
 Publication date 2015
and research's language is English
 Authors Robin Kothari




Ask ChatGPT about the research

We show a nearly quadratic separation between deterministic communication complexity and the logarithm of the partition number, which is essentially optimal. This improves upon a recent power 1.5 separation of Goos, Pitassi, and Watson (FOCS 2015). In query complexity, we establish a nearly quadratic separation between deterministic (and even randomized) query complexity and subcube partition complexity, which is also essentially optimal. We also establish a nearly power 1.5 separation between quantum query complexity and subcube partition complexity, the first superlinear separation between the two measures. Lastly, we show a quadratic separation between quantum query complexity and one-sided subcube partition complexity. Our query complexity separations use the recent cheat sheet framework of Aaronson, Ben-David, and the author. Our query functions are built up in stages by alternating function composition with the cheat sheet construction. The communication complexity separation follows from lifting the query separation to communication complexity.



rate research

Read More

In 1986, Saks and Wigderson conjectured that the largest separation between deterministic and zero-error randomized query complexity for a total boolean function is given by the function $f$ on $n=2^k$ bits defined by a complete binary tree of NAND gates of depth $k$, which achieves $R_0(f) = O(D(f)^{0.7537ldots})$. We show this is false by giving an example of a total boolean function $f$ on $n$ bits whose deterministic query complexity is $Omega(n/log(n))$ while its zero-error randomized query complexity is $tilde O(sqrt{n})$. We further show that the quantum query complexity of the same function is $tilde O(n^{1/4})$, giving the first example of a total function with a super-quadratic gap between its quantum and deterministic query complexities. We also construct a total boolean function $g$ on $n$ variables that has zero-error randomized query complexity $Omega(n/log(n))$ and bounded-error randomized query complexity $R(g) = tilde O(sqrt{n})$. This is the first super-linear separation between these two complexity measures. The exact quantum query complexity of the same function is $Q_E(g) = tilde O(sqrt{n})$. These two functions show that the relations $D(f) = O(R_1(f)^2)$ and $R_0(f) = tilde O(R(f)^2)$ are optimal, up to poly-logarithmic factors. Further variations of these functions give additional separations between other query complexity measures: a cubic separation between $Q$ and $R_0$, a $3/2$-power separation between $Q_E$ and $R$, and a 4th power separation between approximate degree and bounded-error randomized query complexity. All of these examples are variants of a function recently introduced by goos, Pitassi, and Watson which they used to separate the unambiguous 1-certificate complexity from deterministic query complexity and to resolve the famous Clique versus Independent Set problem in communication complexity.
292 - Shenggen Zheng , Daowen Qiu 2014
State complexity of quantum finite automata is one of the interesting topics in studying the power of quantum finite automata. It is therefore of importance to develop general methods how to show state succinctness results for quantum finite automata. One such method is presented and demonstrated in this paper. In particular, we show that state succinctness results can be derived out of query complexity results.
We study the communication complexity of computing functions $F:{0,1}^ntimes {0,1}^n rightarrow {0,1}$ in the memoryless communication model. Here, Alice is given $xin {0,1}^n$, Bob is given $yin {0,1}^n$ and their goal is to compute F(x,y) subject to the following constraint: at every round, Alice receives a message from Bob and her reply to Bob solely depends on the message received and her input x; the same applies to Bob. The cost of computing F in this model is the maximum number of bits exchanged in any round between Alice and Bob (on the worst case input x,y). In this paper, we also consider variants of our memoryless model wherein one party is allowed to have memory, the parties are allowed to communicate quantum bits, only one player is allowed to send messages. We show that our memoryless communication model capture the garden-hose model of computation by Buhrman et al. (ITCS13), space bounded communication complexity by Brody et al. (ITCS13) and the overlay communication complexity by Papakonstantinou et al. (CCC14). Thus the memoryless communication complexity model provides a unified framework to study space-bounded communication models. We establish the following: (1) We show that the memoryless communication complexity of F equals the logarithm of the size of the smallest bipartite branching program computing F (up to a factor 2); (2) We show that memoryless communication complexity equals garden-hose complexity; (3) We exhibit various exponential separations between these memoryless communication models. We end with an intriguing open question: can we find an explicit function F and universal constant c>1 for which the memoryless communication complexity is at least $c log n$? Note that $cgeq 2+varepsilon$ would imply a $Omega(n^{2+varepsilon})$ lower bound for general formula size, improving upon the best lower bound by Nev{c}iporuk in 1966.
We study the composition question for bounded-error randomized query complexity: Is R(f o g) = Omega(R(f) R(g)) for all Boolean functions f and g? We show that inserting a simple Boolean function h, whose query complexity is only Theta(log R(g)), in between f and g allows us to prove R(f o h o g) = Omega(R(f) R(h) R(g)). We prove this using a new lower bound measure for randomized query complexity we call randomized sabotage complexity, RS(f). Randomized sabotage complexity has several desirable properties, such as a perfect composition theorem, RS(f o g) >= RS(f) RS(g), and a composition theorem with randomized query complexity, R(f o g) = Omega(R(f) RS(g)). It is also a quadratically tight lower bound for total functions and can be quadratically superior to the partition bound, the best known general lower bound for randomized query complexity. Using this technique we also show implications for lifting theorems in communication complexity. We show that a general lifting theorem for zero-error randomized protocols implies a general lifting theorem for bounded-error protocols.
In this work we introduce, both for classical communication complexity and query complexity, a modification of the partition bound introduced by Jain and Klauck [2010]. We call it the public-coin partition bound. We show that (the logarithm to the base two of) its communication complexity and query complexi
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا