Do you want to publish a course? Click here

Chirality and Current-Current Correlation in Fractional Quantum Hall Systems

242   0   0.0 ( 0 )
 Added by Gabriele Campagnano
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study current-current correlation in an electronic analog of a beam splitter realized with edge channels of a fractional quantum Hall liquid at Laughlin filling fractions. In analogy with the known result for chiral electrons, if the currents are measured at points located after the beam splitter, we find that the zero frequency equilibrium correlation vanishes due to the chiral propagation along the edge channels. Furthermore, we show that the current-current correlation, normalized to the tunneling current, exhibits clear signatures of the Laughlin quasi-particles fractional statistics.



rate research

Read More

59 - A. Crepieux , P. Devillard , 2003
The effect of an AC perturbation on the shot noise of a fractional quantum Hall fluid is studied both in the weak and the strong backscattering regimes. It is known that the zero-frequency current is linear in the bias voltage, while the noise derivative exhibits steps as a function of bias. In contrast, at Laughlin fractions, the backscattering current and the backscattering noise both exhibit evenly spaced singularities, which are reminiscent of the tunneling density of states singularities for quasiparticles. The spacing is determined by the quasiparticle charge $ u e$ and the ratio of the DC bias with respect to the drive frequency. Photo--assisted transport can thus be considered as a probe for effective charges at such filling factors, and could be used in the study of more complicated fractions of the Hall effect. A non-perturbative method for studying photo--assisted transport at $ u=1/2$ is developed, using a refermionization procedure.
The dephasing rate of an electron level in a quantum dot, placed next to a fluctuating edge current in the fractional quantum Hall effect, is considered. Using perturbation theory, we first show that this rate has an anomalous dependence on the bias voltage applied to the neighboring quantum point contact, because of the Luttinger liquid physics which describes the fractional Hall fluid. Next, we describe exactly the weak to strong backscattering crossover using the Bethe-Ansatz solution.
213 - A. Braggio , N. Magnoli , M. Merlo 2006
The statistics of tunneling current in a fractional quantum Hall sample with an antidot is studied in the chiral Luttinger liquid picture of edge states. A comparison between Fano factor and skewness is proposed in order to clearly distinguish the charge of the carriers in both the thermal and the shot limit. In addition, we address effects on current moments of non-universal exponents in single-quasiparticle propagators. Positive correlations, result of propagators behaviour, are obtained in the shot noise limit of the Fano factor, and possible experimental consequences are outlined.
We propose two experimental setups that allow for the implementation and the detection of fractional solitons of the Goldstone-Wilczek type. The first setup is based on two magnetic barriers at the edge of a quantum spin Hall system for generating the fractional soliton. If then a quantum point contact is created with the other edge, the linear conductance shows evidence of the fractional soliton. The second setup consists of a single magnetic barrier covering both edges and implementing a long quantum point contact. In this case, the fractional soliton can unambiguously be detected as a dip in the conductance without the need to control the magnetization of the barrier.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا