Do you want to publish a course? Click here

Keldysh Field Theory for Driven Open Quantum Systems

67   0   0.0 ( 0 )
 Added by Lukas Sieberer
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recent experimental developments in diverse areas - ranging from cold atomic gases over light-driven semiconductors to microcavity arrays - move systems into the focus, which are located on the interface of quantum optics, many-body physics and statistical mechanics. They share in common that coherent and driven-dissipative quantum dynamics occur on an equal footing, creating genuine non-equilibrium scenarios without immediate counterpart in condensed matter. This concerns both their non-thermal flux equilibrium states, as well as their many-body time evolution. It is a challenge to theory to identify novel instances of universal emergent macroscopic phenomena, which are tied unambiguously and in an observable way to the microscopic drive conditions. In this review, we discuss some recent results in this direction. Moreover, we provide a systematic introduction to the open system Keldysh functional integral approach, which is the proper technical tool to accomplish a merger of quantum optics and many-body physics, and leverages the power of modern quantum field theory to driven open quantum systems.



rate research

Read More

Phase transitions to absorbing states are among the simplest examples of critical phenomena out of equilibrium. The characteristic feature of these models is the presence of a fluctuationless configuration which the dynamics cannot leave, which has proved a rather stringent requirement in experiments. Recently, a proposal to seek such transitions in highly tuneable systems of cold atomic gases offers to probe this physics and, at the same time, to investigate the robustness of these transitions to quantum coherent effects. Here we specifically focus on the interplay between classical and quantum fluctuations in a simple driven open quantum model which, in the classical limit, reproduces a contact process, which is known to undergo a continuous transition in the directed percolation universality class. We derive an effective long-wavelength field theory for the present class of open spin systems and show that, due to quantum fluctuations, the nature of the transition changes from second to first order, passing through a bicritical point which appears to belong instead to the tricritical directed percolation class.
We develop a quantum field theory for parametrically pumped polaritons using Keldysh Greens function techniques. By considering the mean-field and Gaussian fluctuations, we find that the low energy physics of the highly non-equilibrium phase transition to the optical parametric oscillator regime is in many ways similar to equilibrium condensation. In particular, we show that this phase transition can be associated with an effective chemical potential, at which the systems bosonic distribution function diverges, and an effective temperature. As in equilibrium systems, the transition is achieved by tuning this effective chemical potential to the energy of the lowest normal mode. Since the occupations of the modes are available, we determine experimentally observable properties, such as the luminescence and absorption spectra.
We initiate the study of open quantum field theories using holographic methods. Specifically, we consider a quantum field theory (the system) coupled to a holographic field theory at finite temperature (the environment). We investigate the effects of integrating out the holographic environment with an aim of obtaining an effective dynamics for the resulting open quantum field theory. The influence functionals which enter this open effective action are determined by the real-time (Schwinger-Keldysh) correlation functions of the holographic thermal environment. To evaluate the latter, we exploit recent developments, wherein the semiclassical gravitational Schwinger-Keldysh saddle geometries were identified as complexified black hole spacetimes. We compute real-time correlation functions using holographic methods in these geometries, and argue that they lead to a sensible open effective quantum dynamics for the system in question, a question that hitherto had been left unanswered. In addition to shedding light on open quantum systems coupled to strongly correlated thermal environments, our results also provide a principled computation of Schwinger-Keldysh observables in gravity and holography. In particular, these influence functionals we compute capture both the dissipative physics of black hole quasinormal modes, as well as that of the fluctuations encoded in outgoing Hawking quanta, and interactions between them. We obtain results for these observables at leading order in a low frequency and momentum expansion in general dimensions, in addition to determining explicit results for two dimensional holographic CFT environments.
We study the dynamics and unbinding transition of vortices in the compact anisotropic Kardar-Parisi-Zhang (KPZ) equation. The combination of non-equilibrium conditions and strong spatial anisotropy drastically affects the structure of vortices and amplifies their mutual binding forces, thus stabilizing the ordered phase. We find novel universal critical behavior in the vortex-unbinding crossover in finite-size systems. These results are relevant for a wide variety of physical systems, ranging from strongly coupled light-matter quantum systems to dissipative time crystals.
We derive a theoretical model which describes Bose-Einstein condensation in an open driven-dissipative system. It includes external pumping of a thermal reservoir, finite life time of the condensed particles and energy relaxation. The coupling between the reservoir and the condensate is described with semi-classical Boltzmann rates. This results in a dissipative term in the Gross-Pitaevskii equation for the condensate, which is proportional to the energy of the elementary excitations of the system. We analyse the main properties of a condensate described by this hybrid Boltzmann Gross-Pitaevskii model, namely, dispersion of the elementary excitations, bogolon distribution function, first order coherence, dynamic and energetic stability, drag force created by a disorder potential. We find that the dispersion of the elementary excitations of a condensed state fulfils the Landau criterion of superfluidity. The condensate is dynamically and energetically stable as longs it moves at a velocity smaller than the speed of excitations. First order spatial coherence of the condensate is found to decay exponentially in 1D and with a power law in 2D, similarly with the case of conservative systems. The coherence lengths are found to be longer due to the finite life time of the condensate excitations. We compare these properties with the ones of a condensate described by the popular diffusive models in which the dissipative term is proportional to the local condensate density. In the latter, the dispersion of excitations is diffusive which as soon as the condensate is put into motion implies finite mechanical friction and can lead to an energetic instability.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا