Do you want to publish a course? Click here

Generalized analytic functions, Moutard-type transforms and holomorphic maps

69   0   0.0 ( 0 )
 Added by Piotr Grinevich G
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We continue the studies of Moutard-type transform for generalized analytic functions started in our previous paper: arXiv:1510.08764. In particular, we suggest an interpretation of generalized analytic functions as spinor fields and show that in the framework of this approach Moutard-type transforms for the aforementioned functions commute with holomorphic changes of variables.

rate research

Read More

We continue studies of Moutard-type transforms for the generalized analytic functions started in arXiv:1510.08764, arXiv:1512.00343. In particular, we show that generalized analytic functions with the simplest contour poles can be Moutard transformed to the regular ones, at least, locally. In addition, the later Moutard-type transforms are locally invertible.
We construct a Moutard-type transform for the generalized analytic functions. The first theorems and the first explicit examples in this connection are given.
A Moutard type transformation for matrix generalized analytic functions is derived. Relations between Moutard type transforms and gauge transformations are demonstrated.
372 - Pisheng Ding 2021
Via a unified geometric approach, a class of generalized trigonometric functions with two parameters are analytically extended to maximal domains on which they are univalent. Some consequences are deduced concerning commutation with rotation, continuation beyond the domain of univalence, and periodicity.
94 - Ning Zhang 2021
Let $mathcal{G}$ resp. $M$ be a positive dimensional Lie group resp. connected complex manifold without boundary and $V$ a finite dimensional $C^{infty}$ compact connected manifold, possibly with boundary. Fix a smoothness class $mathcal{F}=C^{infty}$, Holder $C^{k, alpha}$ or Sobolev $W^{k, p}$. The space $mathcal{F}(V, mathcal{G})$ resp. $mathcal{F}(V, M)$ of all $mathcal{F}$ maps $V to mathcal{G}$ resp. $V to M$ is a Banach/Frechet Lie group resp. complex manifold. Let $mathcal{F}^0(V, mathcal{G})$ resp. $mathcal{F}^{0}(V, M)$ be the component of $mathcal{F}(V, mathcal{G})$ resp. $mathcal{F}(V, M)$ containing the identity resp. constants. A map $f$ from a domain $Omega subset mathcal{F}_1(V, M)$ to $mathcal{F}_2(W, M)$ is called range decreasing if $f(x)(W) subset x(V)$, $x in Omega$. We prove that if $dim_{mathbb{R}} mathcal{G} ge 2$, then any range decreasing group homomorphism $f: mathcal{F}_1^0(V, mathcal{G}) to mathcal{F}_2(W, mathcal{G})$ is the pullback by a map $phi: W to V$. We also provide several sufficient conditions for a range decreasing holomorphic map $Omega$ $to$ $mathcal{F}_2(W, M)$ to be a pullback operator. Then we apply these results to study certain decomposition of holomorphic maps $mathcal{F}_1(V, N) supset Omega to mathcal{F}_2(W, M)$. In particular, we identify some classes of holomorphic maps $mathcal{F}_1^{0}(V, mathbb{P}^n) to mathcal{F}_2(W, mathbb{P}^m)$, including all automorphisms of $mathcal{F}^{0}(V, mathbb{P}^n)$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا