Do you want to publish a course? Click here

Energetics and carrier transport in doped Si/SiO2 quantum dots

115   0   0.0 ( 0 )
 Added by Roberto Guerra
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

In the present theoretical work we have considered impurities, either boron or phosphorous, located at different substitutional sites in silicon quantum dots (Si-QDs) with diameters around 1.5,nm, embedded in a SiO2 matrix. Formation energy calculations reveal that the most energetically-favored doping sites are inside the QD and at the Si/SiO2 interface for P and B impurities, respectively. Furthermore, electron and hole transport calculations show in all the cases a strong reduction of the minimum voltage threshold, and a corresponding increase of the total current in the low-voltage regime. At higher voltage, our findings indicate a significant increase of transport only for P-doped Si-QDs, while the electrical response of B-doped ones does not stray from the undoped case. These findings are of support for the employment of doped Si-QDs in a wide range of applications, such as Si-based photonics or photovoltaic solar cells.



rate research

Read More

The valley-orbit coupling in a few-electron Si quantum dot is expected to be a function of its occupation number N. We study the spectrum of multivalley Si quantum dots for 2 <= N <= 4, showing that, counterintuitively, electron-electron interaction effects on the valley-orbit coupling are negligible. For N=2 they are suppressed by valley interference, for N=3 they vanish due to spinor overlaps, and for N = 4 they cancel between different pairs of electrons. To corroborate our theoretical findings, we examine the experimental energy spectrum of a few-electron metal-oxide-semiconductor quantum dot. The measured spin-valley state filling sequence in a magnetic field reveals that the valley-orbit coupling is definitively unaffected by the occupation number.
Spatially indirect Type-II band alignment in magnetically-doped quantum dot (QD) structures provides unexplored opportunities to control the magnetic interaction between carrier wavefunction in the QD and magnetic impurities. Unlike the extensively studied, spatially direct, QDs with Type-I band alignment where both electrons and holes are confined in the QD, in ZnTe QDs embedded in a (Zn,Mn)Se matrix only the holes are confined in the QDs. Photoexcitation with photon energy 3.06 eV (2.54 eV) generates electron-hole pairs predominantly in the (Zn,Mn)Se matrix (ZnTe QDs). The photoluminescence (PL) at 7 K in the presence of an external magnetic field exhibits an up to three-fold increase in the saturation red shift with the 2.54 eV excitation compared to the shift observed with 3.06 eV excitation. This unexpected result is attributed to multiple hole occupancy of the QD and the resulting increased penetration of the hole wavefunction tail further into the (Zn,Mn)Se matrix. The proposed model is supported by microscopic calculations which accurately include the role of hole-hole Coulomb interactions as well as the hole-Mn spin exchange interactions.
We examine energy spectra of Si quantum dots embedded into Si_{0.75}Ge_{0.25} buffers using atomistic numerical calculations for dimensions relevant to qubit implementations. The valley degeneracy of the lowest orbital state is lifted and valley splitting fluctuates with monolayer frequency as a function of the dot thickness. For dot thicknesses <6 nm valley splitting is found to be >150 ueV. Using the unique advantage of atomistic calculations we analyze the effect of buffer disorder on valley splitting. Disorder in the buffer leads to the suppression of valley splitting by a factor of 2.5, the splitting fluctuates with ~20 ueV for different disorder realizations. Through these simulations we can guide future experiments into regions of low device-to-device fluctuations.
We report on a quantum dot device design that combines the low disorder properties of undoped SiGe heterostructure materials with an overlapping gate stack in which each electrostatic gate has a dominant and unique function -- control of individual quantum dot occupancies and of lateral tunneling into and between dots. Control of the tunneling rate between a dot and an electron bath is demonstrated over more than nine orders of magnitude and independently confirmed by direct measurement within the bandwidth of our amplifiers. The inter-dot tunnel coupling at the (0,2)<-->(1,1) charge configuration anti-crossing is directly measured to quantify the control of a single inter-dot tunnel barrier gate. A simple exponential dependence is sufficient to describe each of these tunneling processes as a function of the controlling gate voltage.
166 - A. Wild , J. Sailer , J. Nutzel 2010
We present an electrostatically defined few-electron double quantum dot (QD) realized in a molecular beam epitaxy grown Si/SiGe heterostructure. Transport and charge spectroscopy with an additional QD as well as pulsed-gate measurements are demonstrated. We discuss technological challenges specific for silicon-based heterostructures and the effect of a comparably large effective electron mass on transport properties and tunability of the double QD. Charge noise, which might be intrinsically induced due to strain-engineering is proven not to affect the stable operation of our device as a spin qubit. Our results promise the suitability of electrostatically defined QDs in Si/SiGe heterostructures for quantum information processing.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا