No Arabic abstract
We explore the environmental dependence of star formation timescales in low mass galaxies using the [$alpha$/Fe] abundance ratio as an evolutionary clock. We present integrated [$alpha$/Fe] measurements for 11 low mass ($M_star sim 10^9~M_odot$) early-type galaxies (ETGs) with a large range of cluster-centric distance in the Virgo Cluster. We find a gradient in [$alpha$/Fe], where the galaxies closest to the cluster center (the cD galaxy, M87) have the highest values. This trend is driven by galaxies within a projected radius of 0.4~Mpc (0.26 times the virial radius of Virgo~A), all of which have super-solar [$alpha$/Fe]. Galaxies in this mass range exhibit a large scatter in the [$alpha$/Fe]--$sigma$ diagram, and do not obviously lie on an extension of the relation defined by massive ETGs. In addition, we find a correlation between [$alpha$/Fe] and globular cluster specific frequency ($S_N$), suggesting that low-mass ETGs that formed their stars over a short period of time, were also efficient at forming massive star clusters. The innermost low-mass ETGs in our sample have [$alpha$/Fe] values comparable to that of M87, implying that environment is the controlling factor for star formation timescales in dense regions. These low-mass galaxies could be the surviving counterparts of the objects that have already been accreted into the halo of M87, and may be the link between present-day low-mass galaxies and the old, metal-poor, high-[$alpha$/Fe], high-$S_N$ stellar populations seen in the outer halos of massive ETGs.
We present observations of $^{13}$CO(1-0) in 17 Combined Array for Research in Millimeter Astronomy (CARMA) Atlas3D early-type galaxies (ETGs), obtained simultaneously with $^{12}$CO(1-0) observations. The $^{13}$CO in six ETGs is sufficiently bright to create images. In these 6 sources, we do not detect any significant radial gradient in the $^{13}$CO/$^{12}$CO ratio between the nucleus and the outlying molecular gas. Using the $^{12}$CO channel maps as 3D masks to stack the $^{13}$CO emission, we are able to detect 15/17 galaxies to $>3sigma$ (and 12/17 to at least 5$sigma$) significance in a spatially integrated manner. Overall, ETGs show a wide distribution of $^{13}$CO/$^{12}$CO ratios, but Virgo cluster and group galaxies preferentially show a $^{13}$CO/$^{12}$CO ratio about 2 times larger than field galaxies, although this could also be due to a mass dependence, or the CO spatial extent ($R_{rm CO}/R_{rm e}$). ETGs whose gas has a morphologically-settled appearance also show boosted $^{13}$CO/$^{12}$CO ratios. We hypothesize that this variation could be caused by (i) the extra enrichment of gas from molecular reprocessing occurring in low-mass stars (boosting the abundance of $^{13}$C to $^{12}$C in the absence of external gas accretion), (ii) much higher pressure being exerted on the midplane gas (by the intracluster medium) in the cluster environment than in isolated galaxies, or (iii) all but the densest molecular gas clumps being stripped as the galaxies fall into the cluster. Further observations of $^{13}$CO in dense environments, particularly of spirals, as well as studies of other isotopologues, should be able to distinguish between these hypotheses.
Under the $Lambda$ cold dark matter ($Lambda$CDM) cosmological models, massive galaxies are expected to be larger in denser environments through frequent hierarchical mergers with other galaxies. Yet, observational studies of low-redshift early-type galaxies have shown no such trend, standing as a puzzle to solve during the past decade. We analyzed 73,116 early-type galaxies at $0.1leq z < 0.15$, adopting a robust nonparametric size measurement technique and extending the analysis to many massive galaxies. We find for the first time that local early-type galaxies heavier than $10^{11.2}M_{odot}$ show a clear environmental dependence in mass-size relation, in such a way that galaxies are as much as 20-40% larger in densest environments than in underdense environments. Splitting the sample into the brightest cluster galaxies (BCGs) and non-BCGs does not affect the result. This result agrees with the $Lambda$CDM cosmological simulations and suggests that mergers played a significant role in the growth of massive galaxies in dense environments as expected in theory.
We present the discovery of rotation in quenched, low-mass early-type galaxies that are isolated. This finding challenges the claim that (all) rotating dwarf early-type galaxies in clusters were once spiral galaxies that have since been harassed and transformed into early-type galaxies. Our search of the Sloan Digital Sky Survey data within the Local volume ($z<0.02$) has yielded a sample of 46 galaxies with a stellar mass $M_star lesssim 5times10^9$ M$_odot$ (median $M_star sim 9.29 times 10^8$ M$_odot$), a low H$alpha$ equivalent width EW$_{{rm H}alpha}< 2$ AA, and no massive neighbour ($M_{star}gtrsim3 times 10^{10}$ M$_{odot}$) within a velocity interval of $Delta V = 500$ km s$^{-1}$ and a projected distance of $sim$1 Mpc. Nine of these galaxies were subsequently observed with Keck ESI and their radial kinematics are presented here. These extend out to the half-light radius $R_e$ in the best cases, and beyond $R_e/2$ for all. They reveal a variety of behaviours similar to those of a comparison sample of early-type dwarf galaxies in the Virgo cluster observed by Toloba et al. Both samples have similar frequencies of slow and fast rotators, as well as kinematically decoupled cores. This, and especially the finding of rotating quenched low-mass galaxies in isolation, reveals that the early-type dwarfs in galaxy clusters need not be harassed or tidally stirred spiral galaxies.
We describe the construction and study of an objectively-defined sample of early-type galaxies in low-density environments. The sample galaxies are selected from a recently-completed redshift survey using uniform and readily-quantified isolation criteria, and are drawn from a sky area of ~700 deg^2, to a depth of 7000 k/ms and an apparent magnitude limit of b_J < 16.1. Their early-type (E/S0) morphologies are confirmed by subsequent CCD imaging. Five out of the nine sample galaxies show signs of morphological peculiarity such as tidal debris or blue circumnuclear rings. We confirm that E/S0 galaxies are rare in low-density regions, accounting for only ~8% of the total galaxy population in such environments. We present spectroscopic observations of nine galaxies in the sample, which are used, in conjunction with updated stellar population models, to investigate star-formation histories. Environmental effects on early-type galaxy evolution are investigated by comparison with a sample of Fornax cluster E/S0s. Results from both samples are compared with predictions from semi-analytic galaxy formation models. The Mg-sig relation of E/S0s in low-density regions is shown to be indistinguishable from that of the Fornax sample. Luminosity-weighted stellar ages and metallicities are determined by considering various combinations of line-indices. At a given luminosity, the E/S0 galaxies in low-density regions are younger than the E/S0s in clusters (by ~2-3 Gyr), and also more metal-rich (by ~0.2 dex). We infer that an anti-correlation of age and metallicity effects is responsible for maintaining the zero-point of the Mg-sig relation. The youngest galaxies in our sample show clear morphological signs of interaction. (Abridged)
New photometric and long-slit spectroscopic observations are presented for NGC 7113, PGC 1852, and PGC 67207 which are three bright galaxies residing in low-density environments. The surface-brightness distribution is analysed from the K_S-band images taken with adaptive optics at the Gemini North Telescope and the ugriz-band images from the Sloan Digital Sky Survey while the line-of-sight stellar velocity distribution and line-strength Lick indices inside the effective radius are measured along several position angles. The age, metallicity, and alpha-element abundance of the galaxies are estimated from single stellar-population models. In spite of the available morphological classification, images show that PGC 1852 is a barred spiral which we do not further consider for mass modelling. The structural parameters of the two early-type galaxies NGC 7113 and PGC 67207 are obtained from a two-dimensional photometric decomposition and the mass-to-light ratio of all the (luminous and dark) mass that follows the light is derived from orbit-based axisymmetric dynamical modelling together with the mass density of the dark matter halo. The dynamically derived mass that follows the light is about a factor of 2 larger than the stellar mass derived using stellar-population models with Kroupa initial mass function. Both galaxies have a lower content of halo dark matter with respect to early-type galaxies in high-density environments and in agreement with the predictions of semi-analytical models of galaxy formation.