No Arabic abstract
We present the results of a four-month campaign searching for low-frequency radio transients near the North Celestial Pole with the Low-Frequency Array (LOFAR), as part of the Multifrequency Snapshot Sky Survey (MSSS). The data were recorded between 2011 December and 2012 April and comprised 2149 11-minute snapshots, each covering 175 deg^2. We have found one convincing candidate astrophysical transient, with a duration of a few minutes and a flux density at 60 MHz of 15-25 Jy. The transient does not repeat and has no obvious optical or high-energy counterpart, as a result of which its nature is unclear. The detection of this event implies a transient rate at 60 MHz of 3.9 (+14.7, -3.7) x 10^-4 day^-1 deg^-2, and a transient surface density of 1.5 x 10^-5 deg^-2, at a 7.9-Jy limiting flux density and ~10-minute time-scale. The campaign data were also searched for transients at a range of other time-scales, from 0.5 to 297 min, which allowed us to place a range of limits on transient rates at 60 MHz as a function of observation duration.
The shape of low-frequency radio continuum spectra of normal galaxies is not well understood, the key question being the role of physical processes such as thermal absorption in shaping them. In this work we take advantage of the LOFAR Multifrequency Snapshot Sky Survey (MSSS) to investigate such spectra for a large sample of nearby star-forming galaxies. Using the measured 150MHz flux densities from the LOFAR MSSS survey and literature flux densities at various frequencies we have obtained integrated radio spectra for 106 galaxies. The spectra are explained through the use of a three-dimensional model of galaxy radio emission, and radiation transfer dependent on the galaxy viewing angle and absorption processes. Spectra of our galaxies are generally flatter at lower compared to higher frequencies but as there is no tendency for the highly inclined galaxies to have more flattened low-frequency spectra, we argue that the observed flattening is not due to thermal absorption, contradicting the suggestion of Israel & Mahoney (1990). According to our modelled radio maps for M51-like galaxies, the free-free absorption effects can be seen only below 30MHz and in the global spectra just below 20MHz, while in the spectra of starburst galaxies, like M82, the flattening due to absorption is instead visible up to higher frequencies of about 150MHz. Locally, within galactic disks, the absorption effects are distinctly visible in M51-like galaxies as spectral flattening around 100-200MHz in the face-on objects, and as turnovers in the edge-on ones, while in M82-like galaxies there are strong turnovers at frequencies above 700MHz, regardless of viewing angle. Our modelling suggests that the weak spectral flattening observed in the nearby galaxies studied here results principally from synchrotron spectral curvature due to cosmic ray energy losses and propagation effects.
The aim of the LOFAR Epoch of Reionization (EoR) project is to detect the spectral fluctuations of the redshifted HI 21cm signal. This signal is weaker by several orders of magnitude than the astrophysical foreground signals and hence, in order to achieve this, very long integrations, accurate calibration for stations and ionosphere and reliable foreground removal are essential. One of the prospective observing windows for the LOFAR EoR project will be centered at the North Celestial Pole (NCP). We present results from observations of the NCP window using the LOFAR highband antenna (HBA) array in the frequency range 115 MHz to 163 MHz. The data were obtained in April 2011 during the commissioning phase of LOFAR. We used baselines up to about 30 km. With about 3 nights, of 6 hours each, effective integration we have achieved a noise level of about 100 microJy/PSF in the NCP window. Close to the NCP, the noise level increases to about 180 microJy/PSF, mainly due to additional contamination from unsubtracted nearby sources. We estimate that in our best night, we have reached a noise level only a factor of 1.4 above the thermal limit set by the noise from our Galaxy and the receivers. Our continuum images are several times deeper than have been achieved previously using the WSRT and GMRT arrays. We derive an analytical explanation for the excess noise that we believe to be mainly due to sources at large angular separation from the NCP.
We report the detection of a potential cosmic radio transient source using the two stations of the Long Wavelength Array. The transient was detected on 18 October 2017 08:47 UTC near the celestial equator while reducing 10,240 hours of archival all-sky images from the LWA1 and LWA-SV stations. The detected transient at 34 MHz has a duration of 15 - 20 seconds and a flux density of 842 +/- 116 Jy at LWA1 and 830 +/- 92 Jy at LWA-SV. The transient source has not repeated, and its nature is not well understood. The Pan-STARRS optical telescope has detected a supernova that occurred on the edge of the position error circle of the transient on the same day.
The prompt emission in long gamma-ray bursts arises from within relativistic outflows created during the collapse of massive stars, and the mechanism by which radiation is produced may be either magnetically- or matter-dominated. In this work we suggest an observational test of a magnetically-dominated Poynting flux model that predicts both gamma-ray and low-frequency radio pulses. A common feature among early light curves of long gamma-ray bursts are X-ray flares, which have been shown to arise from sites internal to the jet. Ascribing these events to the prompt emission, we take an established Swift XRT flare sample and apply a magnetically-dominated wind model to make predictions for the timing and flux density of corresponding radio pulses in the ~100-200 MHz band observable with radio facilities such as LOFAR. We find that 44 per cent of the X-ray flares studied would have had detectable radio emission under this model, for typical sensitivities reached using LOFARs rapid response mode and assuming negligible absorption and scattering effects in the interstellar and intergalactic medium. We estimate the rate of Swift gamma-ray bursts displaying X-ray flares with detectable radio pulses, accessible to LOFAR, of order seven per year. We determine that LOFAR triggered observations can play a key role in establishing the long debated mechanism responsible for gamma-ray burst prompt emission.
Radio halos are extended ($sim{rm Mpc}$), steep-spectrum sources found in the central region of dynamically disturbed clusters of galaxies. Only a handful of radio halos have been reported to reside in galaxy clusters with a mass $M_{500}lesssim5times10^{14},M_odot$. In this paper we present a LOFAR 144 MHz detection of a radio halo in the galaxy cluster Abell 990 with a mass of $M_{500}=(4.9pm0.3)times10^{14},M_odot$. The halo has a projected size of $sim$700$,{rm kpc}$ and a flux density of $20.2pm2.2,{rm mJy}$ or a radio power of $1.2pm0.1times10^{24},{rm W,Hz}^{-1}$ at the cluster redshift ($z=0.144$) which makes it one of the two halos with the lowest radio power detected to date. Our analysis of the emission from the cluster with Chandra archival data using dynamical indicators shows that the cluster is not undergoing a major merger but is a slightly disturbed system with a mean temperature of $5,{rm keV}$. The low X-ray luminosity of $L_{X}=(3.66pm0.08)times10^{44},{rm ergs,s}^{-1}$ in the 0.1--2.4 keV band implies that the cluster is one of the least luminous systems known to host a radio halo. Our detection of the radio halo in Abell 990 opens the possibility of detecting many more halos in poorly-explored less-massive clusters with low-frequency telescopes such as LOFAR, MWA (Phase II) and uGMRT.