Do you want to publish a course? Click here

The Cosmological Slavnov-Taylor Identity from BRST Symmetry in Single-Field Inflation

112   0   0.0 ( 0 )
 Added by Daniele Binosi
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

The cosmological Slavnov-Taylor (ST) identity of the Einstein-Hilbert action coupled to a single inflaton field is obtained from the Becchi-Rouet-Stora-Tyutin (BRST) symmetry associated with diffeomorphism invariance in the Arnowitt-Deser-Misner (ADM) formalism. The consistency conditions between the correlators of the scalar and tensor modes in the squeezed limit are then derived from the ST identity, together with the softly broken conformal symmetry. Maldacenas original relations connecting the 2- and 3-point correlators at horizon crossing are recovered, as well as the next-to-leading corrections, controlled by the special conformal transformations.



rate research

Read More

258 - Hael Collins , R. Holman , 2014
We develop a method for treating the consistency relations of inflation that includes the full time-evolution of the state. This approach relies only on the symmetries of the inflationary setting, in particular a residual conformal symmetry in the spatial part of the metric, along with general properties which hold for any quantum field theory. As a result, the consistency relations that emerge, which are essentially the Slavnov-Taylor identities associated with this residual conformal symmetry, apply very generally: they are true of the full Greens functions, hold largely independently of the particular inflationary model, and can be used for arbitrary states. We illustrate these techniques by showing the form assumed by the standard consistency relation between the two and three-point functions for the primordial scalar fluctuations when they are in a Bunch-Davies state. But because we have included the full evolution of the state, this approach works for a general initial state as well and does not need to have assumed that inflation began in the Bunch-Davies state.
94 - Amjad Ashoorioon 2018
The difficulty of building metastable vacua in string theory has led some to conjecture that, in the string theory landscape, potentials satisfy $left| abla V/Vright|geq csim mathcal{O}(1)$. This condition, which is supported by different explicit constructions, suggests that the EFTs which lead to metastable de-Sitter vacua belong to what is dubbed as swampland. This condition endangers the paradigm of single field inflation. In this paper, we show how scalar excited initial states cannot rescue single field inflation from the swampland, as they produce large local scalar non-gaussianity, which is in conflict with the Planck upper bound. Instead, we demonstrate that one can salvage single field inflation using excited initial states for tensor perturbations, which in this case produce only large flattened non-gaussianity in the tensor bispectrum. We comment on the possible methods one can prepare such excited initial conditions for the tensor perturbations.
359 - A. Quadri 2014
We clarify the derivation of high-energy QCD evolution equations from the fundamental gauge symmetry of QCD. The gauge-fixed classical action of the Color Glass Condensate (CGC) is shown to be invariant under a suitable BRST symmetry, that holds after the separation of the gluon modes into their fast classical (background) part, the soft component and the semifast one, over which the one-step quantum evolution is carried out. The resulting Slavnov-Taylor (ST) identity holds to all orders in perturbation theory and strongly constrains the CGC effective field theory (EFT) arising from the integration of the soft modes. We show that the ST identity guarantees gauge-invariance of the EFT. It also allows to control the dependence on the gauge-fixing choice for the semifast modes (usually the lightcone gauge in explicit computations). The formal properties of the evolution equations valid in different regimes (BKFL, JIMWLK, ...) can be all derived in a unified setting within this algebraic approach.
We compute the low energy effective field theory (EFT) expansion for single-field inflationary models that descend from a parent theory containing multiple other scalar fields. By assuming that all other degrees of freedom in the parent theory are sufficiently massive relative to the inflaton, it is possible to derive an EFT valid to arbitrary order in perturbations, provided certain generalized adiabaticity conditions are respected. These conditions permit a consistent low energy EFT description even when the inflaton deviates off its adiabatic minimum along its slowly rolling trajectory. By generalizing the formalism that identifies the adiabatic mode with the Goldstone boson of this spontaneously broken time translational symmetry prior to the integration of the heavy fields, we show that this invariance of the parent theory dictates the entire non-perturbative structure of the descendent EFT. The couplings of this theory can be written entirely in terms of the reduced speed of sound of adiabatic perturbations. The resulting operator expansion is distinguishable from that of other scenarios, such as standard single inflation or DBI inflation. In particular, we re-derive how certain operators can become transiently strongly coupled along the inflaton trajectory, consistent with slow-roll and the validity of the EFT expansion, imprinting features in the primordial power spectrum, and we deduce the relevant cubic operators that imply distinct signatures in the primordial bispectrum which may soon be constrained by observations.
We show that a powerful Slavnov-Taylor (ST) identity exists for the Effective Field Theory (EFT) of the Color Glass Condensate (CGC), allowing to control by purely algebraic means the full dependence on the background fields of the fast gluon modes, as well as the correlators of the quantum fluctuations of the classical gluon source. We use this formalism to study the change of the background fast modes (in the Coulomb gauge), induced by the quantum corrections of the semi-fast gluons. We establish the evolution equation for the EFT of the CGC, which points towards an algebraic derivation of the JIMWLK equation. Being based on symmetry-arguments only, the approach can be used to extend the analysis to arbitrary gauges and to higher orders in the perturbation expansion of the EFT.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا