Spin-orbit torque engineering via oxygen manipulation


Abstract in English

Spin transfer torques allow the electrical manipulation of the magnetization at room temperature, which is desirable in spintronic devices such as spin transfer torque memories. When combined with spin-orbit coupling, they give rise to spin-orbit torques which are a more powerful tool for magnetization control and can enrich device functionalities. The engineering of spin-orbit torques, based mostly on the spin Hall effect, is being intensely pursued. Here we report that the oxidation of spin-orbit torque devices triggers a new mechanism of spin-orbit torque, which is about two times stronger than that based on the spin Hall effect. We thus introduce a way to engineer spin-orbit torques via oxygen manipulation. Combined with electrical gating of the oxygen level, our findings may also pave the way towards reconfigurable logic devices.

Download