Do you want to publish a course? Click here

Full and fast calibration of the Heston stochastic volatility model

59   0   0.0 ( 0 )
 Added by Yiran Cui
 Publication date 2015
  fields Financial
and research's language is English




Ask ChatGPT about the research

This paper presents an algorithm for a complete and efficient calibration of the Heston stochastic volatility model. We express the calibration as a nonlinear least squares problem. We exploit a suitable representation of the Heston characteristic function and modify it to avoid discontinuities caused by branch switchings of complex functions. Using this representation, we obtain the analytical gradient of the price of a vanilla option with respect to the model parameters, which is the key element of all variants of the objective function. The interdependency between the components of the gradient enables an efficient implementation which is around ten times faster than a numerical gradient. We choose the Levenberg-Marquardt method to calibrate the model and do not observe multiple local minima reported in previous research. Two-dimensional sections show that the objective function is shaped as a narrow valley with a flat bottom. Our method is the fastest calibration of the Heston model developed so far and meets the speed requirement of practical trading.



rate research

Read More

The Heston stochastic volatility model is a standard model for valuing financial derivatives, since it can be calibrated using semi-analytical formulas and captures the most basic structure of the market for financial derivatives with simple structure in time-direction. However, extending the model to the case of time-dependent parameters, which would allow for a parametrization of the market at multiple timepoints, proves more challenging. We present a simple and numerically efficient approach to the calibration of the Heston stochastic volatility model with piecewise constant parameters. We show that semi-analytical formulas can also be derived in this more complex case and combine them with recent advances in computational techniques for the Heston model. Our numerical scheme is based on the calculation of the characteristic function using Gauss-Kronrod quadrature with an additional control variate that stabilizes the numerical integrals. We use our method to calibrate the Heston model with piecewise constant parameters to the foreign exchange (FX) options market. Finally, we demonstrate improvements of the Heston model with piecewise constant parameters upon the standard Heston model in selected cases.
We propose a general, very fast method to quickly approximate the solution of a parabolic Partial Differential Equation (PDEs) with explicit formulas. Our method also provides equaly fast approximations of the derivatives of the solution, which is a challenge for many other methods. Our approach is based on a computable series expansion in terms of a small parameter. As an example, we treat in detail the important case of the SABR PDE for $beta = 1$, namely $partial_{tau}u = sigma^2 big [ frac{1}{2} (partial^2_xu - partial_xu) + u rho partial_xpartial_sigma u + frac{1}{2} u^2 partial^2_sigma u , big ] + kappa (theta - sigma) partial_sigma$, by choosing $ u$ as small parameter. This yields $u = u_0 + u u_1 + u^2 u_2 + ldots$, with $u_j$ independent of $ u$. The terms $u_j$ are explicitly computable, which is also a challenge for many other, related methods. Truncating this expansion leads to computable approximations of $u$ that are in closed form, and hence can be evaluated very quickly. Most of the other related methods use the time $tau$ as a small parameter. The advantage of our method is that it leads to shorter and hence easier to determine and to generalize formulas. We obtain also an explicit expansion for the implied volatility in the SABR model in terms of $ u$, similar to Hagans formula, but including also the {em mean reverting term.} We provide several numerical tests that show the performance of our method. In particular, we compare our formula to the one due to Hagan. Our results also behave well when used for actual market data and show the mean reverting property of the volatility.
In the option valuation literature, the shortcomings of one factor stochastic volatility models have traditionally been addressed by adding jumps to the stock price process. An alternate approach in the context of option pricing and calibration of implied volatility is the addition of a few other factors to the volatility process. This paper contemplates two extensions of the Heston stochastic volatility model. Out of which, one considers the addition of jumps to the stock price process (a stochastic volatility jump diffusion model) and another considers an additional stochastic volatility factor varying at a different time scale (a multiscale stochastic volatility model). An empirical analysis is carried out on the market data of options with different strike prices and maturities, to compare the pricing performance of these models and to capture their implied volatility fit. The unknown parameters of these models are calibrated using the non-linear least square optimization. It has been found that the multiscale stochastic volatility model performs better than the Heston stochastic volatility model and the stochastic volatility jump diffusion model for the data set under consideration.
How to reconcile the classical Heston model with its rough counterpart? We introduce a lifted version of the Heston model with n multi-factors, sharing the same Brownian motion but mean reverting at different speeds. Our model nests as extreme cases the classical Heston model (when n = 1), and the rough Heston model (when n goes to infinity). We show that the lifted model enjoys the best of both worlds: Markovianity and satisfactory fits of implied volatility smiles for short maturities with very few parameters. Further, our approach speeds up the calibration time and opens the door to time-efficient simulation schemes.
We propose a fully data-driven approach to calibrate local stochastic volatility (LSV) models, circumventing in particular the ad hoc interpolation of the volatility surface. To achieve this, we parametrize the leverage function by a family of feed-forward neural networks and learn their parameters directly from the available market option prices. This should be seen in the context of neural SDEs and (causal) generative adversarial networks: we generate volatility surfaces by specific neural SDEs, whose quality is assessed by quantifying, possibly in an adversarial manner, distances to market prices. The minimization of the calibration functional relies strongly on a variance reduction technique based on hedging and deep hedging, which is interesting in its own right: it allows the calculation of model prices and model implied volatilities in an accurate way using only small sets of sample paths. For numerical illustration we implement a SABR-type LSV model and conduct a thorough statistical performance analysis on many samples of implied volatility smiles, showing the accuracy and stability of the method.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا