Switching between attractive and repulsive Coulomb-interaction-mediated drag in an ambipolar GaAs/AlGaAs bilayer device


Abstract in English

We present measurements of Coulomb drag in an ambipolar GaAs/AlGaAs double quantum well structure that can be configured as both an electron-hole bilayer and a hole-hole bilayer, with an insulating barrier of only 10 nm between the two quantum wells. The Coulomb drag resistivity is a direct measure of the strength of the interlayer particle-particle interactions. We explore the strongly interacting regime of low carrier densities (2D interaction parameter $r_s$ up to 14). Our ambipolar device design allows comparison between the effects of the attractive electron-hole and repulsive hole-hole interactions, and also shows the effects of the different effective masses of electrons and holes in GaAs.

Download