Do you want to publish a course? Click here

On the Greedy Algorithm for the Shortest Common Superstring Problem with Reversals

99   0   0.0 ( 0 )
 Added by Gabriele Fici
 Publication date 2015
and research's language is English




Ask ChatGPT about the research

We study a variation of the classical Shortest Common Superstring (SCS) problem in which a shortest superstring of a finite set of strings $S$ is sought containing as a factor every string of $S$ or its reversal. We call this problem Shortest Common Superstring with Reversals (SCS-R). This problem has been introduced by Jiang et al., who designed a greedy-like algorithm with length approximation ratio $4$. In this paper, we show that a natural adaptation of the classical greedy algorithm for SCS has (optimal) compression ratio $frac12$, i.e., the sum of the overlaps in the output string is at least half the sum of the overlaps in an optimal solution. We also provide a linear-time implementation of our algorithm.



rate research

Read More

252 - Amin Saberi , David Wajc 2021
Nearly three decades ago, Bar-Noy, Motwani and Naor showed that no online edge-coloring algorithm can edge color a graph optimally. Indeed, their work, titled the greedy algorithm is optimal for on-line edge coloring, shows that the competitive ratio of $2$ of the naive greedy algorithm is best possible online. However, their lower bound required bounded-degree graphs, of maximum degree $Delta = O(log n)$, which prompted them to conjecture that better bounds are possible for higher-degree graphs. While progress has been made towards resolving this conjecture for restricted inputs and arrivals or for random arrival orders, an answer for fully general emph{adversarial} arrivals remained elusive. We resolve this thirty-year-old conjecture in the affirmative, presenting a $(1.9+o(1))$-competitive online edge coloring algorithm for general graphs of degree $Delta = omega(log n)$ under vertex arrivals. At the core of our results, and of possible independent interest, is a new online algorithm which rounds a fractional bipartite matching $x$ online under vertex arrivals, guaranteeing that each edge $e$ is matched with probability $(1/2+c)cdot x_e$, for a constant $c>0.027$.
The problem of finding a common refinement of a set of rooted trees with common leaf set $L$ appears naturally in mathematical phylogenetics whenever poorly resolved information on the same taxa from different sources is to be reconciled. This constitutes a special case of the well-studied supertree problem, where the leaf sets of the input trees may differ. Algorithms that solve the rooted tree compatibility problem are of course applicable to this special case. However, they require sophisticated auxiliary data structures and have a running time of at least $O(k|L|log^2(k|L|))$ for $k$ input trees. Here, we show that the problem can be solved in $O(k|L|)$ time using a simple bottom-up algorithm called LinCR. An implementation of LinCR in Python is freely available at https://github.com/david-schaller/tralda.
For a partial word $w$ the longest common compatible prefix of two positions $i,j$, denoted $lccp(i,j)$, is the largest $k$ such that $w[i,i+k-1]uparrow w[j,j+k-1]$, where $uparrow$ is the compatibility relation of partial words (it is not an equivalence relation). The LCCP problem is to preprocess a partial word in such a way that any query $lccp(i,j)$ about this word can be answered in $O(1)$ time. It is a natural generalization of the longest common prefix (LCP) problem for regular words, for which an $O(n)$ preprocessing time and $O(1)$ query time solution exists. Recently an efficient algorithm for this problem has been given by F. Blanchet-Sadri and J. Lazarow (LATA 2013). The preprocessing time was $O(nh+n)$, where $h$ is the number of holes in $w$. The algorithm was designed for partial words over a constant alphabet and was quite involved. We present a simple solution to this problem with slightly better runtime that works for any linearly-sortable alphabet. Our preprocessing is in time $O(nmu+n)$, where $mu$ is the number of blocks of holes in $w$. Our algorithm uses ideas from alignment algorithms and dynamic programming.
We investigate the single source shortest distance (SSSD) and all pairs shortest distance (APSD) problems as enumeration problems (on unweighted and integer weighted graphs), meaning that the elements $(u, v, d(u, v))$ -- where $u$ and $v$ are vertices with shortest distance $d(u, v)$ -- are produced and listed one by one without repetition. The performance is measured in the RAM model of computation with respect to preprocessing time and delay, i.e., the maximum time that elapses between two consecutive outputs. This point of view reveals that specific types of output (e.g., excluding the non-reachable pairs $(u, v, infty)$, or excluding the self-distances $(u, u, 0)$) and the order of enumeration (e.g., sorted by distance, sorted row-wise with respect to the distance matrix) have a huge impact on the complexity of APSD while they appear to have no effect on SSSD. In particular, we show for APSD that enumeration without output restrictions is possible with delay in the order of the average degree. Excluding non-reachable pairs, or requesting the output to be sorted by distance, increases this delay to the order of the maximum degree. Further, for weighted graphs, a delay in the order of the average degree is also not possible without preprocessing or considering self-distances as output. In contrast, for SSSD we find that a delay in the order of the maximum degree without preprocessing is attainable and unavoidable for any of these requirements.
At CPM 2017, Castelli et al. define and study a new variant of the Longest Common Subsequence Problem, termed the Longest Filled Common Subsequence Problem (LFCS). For the LFCS problem, the input consists of two strings $A$ and $B$ and a multiset of characters $mathcal{M}$. The goal is to insert the characters from $mathcal{M}$ into the string $B$, thus obtaining a new string $B^*$, such that the Longest Common Subsequence (LCS) between $A$ and $B^*$ is maximized. Casteli et al. show that the problem is NP-hard and provide a 3/5-approximation algorithm for the problem. In this paper we study the problem from the experimental point of view. We introduce, implement and test new heuristic algorithms and compare them with the approximation algorithm of Casteli et al. Moreover, we introduce an Integer Linear Program (ILP) model for the problem and we use the state of the art ILP solver, Gurobi, to obtain exact solution for moderate sized instances.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا