Do you want to publish a course? Click here

Braneworld cosmology in $f(R,T)$ gravity

90   0   0.0 ( 0 )
 Added by Pedro Moraes
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Braneworld scenarios consider our observable universe as a brane embedded in a 5D space, named bulk. In this work, I derive the field equations of a braneworld model in a generalized theory of gravitation, namely $f(R,T)$ gravity, with $R$ and $T$, representing the Ricci scalar and the trace of the energy-momentum tensor, respectively. The cosmological parameters obtained from this approach are in agreement with recent constraints from Supernovae Ia data combined with baryon acoustic oscillations and cosmic microwave background observations, favouring such an alternative description of the universe dynamics.



rate research

Read More

The article communicates an alternative route to suffice the late-time acceleration considering a bulk viscous fluid with viscosity coefficient $zeta =zeta _{0}+ zeta _{1} H + zeta _{2} H^{2}$, where $zeta _{0}, zeta _{1}, zeta _{2}$ are constants in the framework of $f(R,T)$ modified gravity. We presume the $f(R,T)$ functional form to be $f=R+2alpha T$ where $alpha$ is a constant. We then solve the field equations for the Hubble Parameter and study the cosmological dynamics of kinematic variables such as deceleration, jerk, snap and lerk parameters as a function of cosmic time. We observe the deceleration parameter to be highly sensitive to $alpha$ and undergoes a signature flipping at around $tsim 10$ Gyrs for $alpha=-0.179$ which is favored by observations. The EoS parameter for our model assumes values close to $-1$ at $t_{0}=13.7$Gyrs which is in remarkable agreement with the latest Planck measurements. Next, we study the evolution of energy conditions and find that our model violate the Strong Energy Condition in order to explain the late-time cosmic acceleration. To understand the nature of dark energy mimicked by the bulk viscous baryonic fluid, we perform some geometrical diagnostics like the ${r,s}$ and ${r,q}$ plane. We found the model to mimic the nature of a Chaplygin gas type dark energy model at early times while a Quintessence type in distant future. Finally, we study the violation of continuity equation for our model and show that in order to explain the cosmic acceleration at the present epoch, energy-momentum must violate.
We study a spin 1/2 fermion in a thick braneworld in the context of teleparallel $f(T, B)$ gravity. Here, $f(T,B)$ is such that $f_1(T,B)=T+k_1B^{n_1}$ and $f_2(T,B)=B+k_2T^{n_2}$, where $n_{1,2}$ and $k_{1,2}$ are parameters that control the influence of torsion and the boundary term. We assume Yukawa coupling, where one scalar field is coupled to a Dirac spinor field. We show how the $n_{1,2}$ and $k_{1,2}$ parameters control the width of the massless Kaluza-Klein mode, the breadth of non-normalized massive fermionic modes, and the properties of the analogue quantum-potential near the origin.
The article presents modeling of inflationary scenarios for the first time in the $f(R,T)$ theory of gravity. We assume the $f(R,T)$ functional from to be $R + eta T$, where $R$ denotes the Ricci scalar, $T$ the trace of the energy-momentum tensor and $eta$ the model parameter (constant). We first investigated an inflationary scenario where the inflation is driven purely due to geometric effects outside of GR. We found the inflation observables to be independent of the number of e-foldings in this setup. The computed value of the spectral index is consistent with latest Planck 2018 dataset while the scalar to tensor ratio is a bit higher. We then proceeded to analyze the behavior of an inflation driven by $f(R,T)$ gravity coupled with a real scalar field. By taking the slow-roll approximation, we generated interesting scenarios where a Klein Gordon potential leads to observationally consistent inflation observables. Our results makes it clear-cut that in addition to the Ricci scalar and scalar fields, the trace of energy momentum tensor also play a major role in driving inflationary scenarios.
Using dynamical system analysis, we explore the cosmology of theories of order up to eight order of the form $f(R, Box R)$. The phase space of these cosmology reveals that higher-order terms can have a dramatic influence on the evolution of the cosmology, avoiding the onset of finite time singularities. We also confirm and extend some of results which were obtained in the past for this class of theories.
In this work we propose the modelling of static wormholes within the $f(R,T)$ extended theory of gravity perspective. We present some models of wormholes, which are constructed from different hypothesis for their matter content, i.e., different relations for their pressure components (radial and lateral) and different equations of state. The solutions obtained for the shape function of the wormholes obey the necessary metric conditions. They show a behaviour similar to those found in previous references about wormholes, which also happens to our solutions for the energy density of such objects. We also apply the energy conditions for the wormholes physical content.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا