A bandgap phenomenon in non-periodic plasmonic waveguides


Abstract in English

The phenomenon of a dispersion bandgap opening between low-loss spectral windows of odd and even plasmonic modes in a layered insulator-metal-insulator plasmonic waveguide is introduced. Beginning with a three layer plasmonic dispersion relation, we explain and numerically confirm the existence of the plasmonic bandgap, and investigate its properties at a very broad spectrum range from ultraviolet to far infrared. The nature of the observed bandgap opening is explained in terms of the near-zero value of an effective permittivity for plasmonic modes in the waveguide. The adjustment of the plasmonic bandgap spectrum is demonstrated with the structural modification of the plasmonic waveguide. As an application example, we illustrate a new concept of coupling control between surface plasmons and free-space excitation waves, by employing a tapered non-adiabatic insulator-metal-insulator waveguide.

Download