Do you want to publish a course? Click here

Numerical Investigation of Metrics for Epidemic Processes on Graphs

83   0   0.0 ( 0 )
 Publication date 2015
and research's language is English




Ask ChatGPT about the research

This study develops the epidemic hitting time (EHT) metric on graphs measuring the expected time an epidemic starting at node $a$ in a fully susceptible network takes to propagate and reach node $b$. An associated EHT centrality measure is then compared to degree, betweenness, spectral, and effective resistance centrality measures through exhaustive numerical simulations on several real-world network data-sets. We find two surprising observations: first, EHT centrality is highly correlated with effective resistance centrality; second, the EHT centrality measure is much more delocalized compared to degree and spectral centrality, highlighting the role of peripheral nodes in epidemic spreading on graphs.



rate research

Read More

The study of motifs in networks can help researchers uncover links between the structure and function of networks in biology, sociology, economics, and many other areas. Empirical studies of networks have identified feedback loops, feedforward loops, and several other small structures as motifs that occur frequently in real-world networks and may contribute by various mechanisms to important functions in these systems. However, these mechanisms are unknown for many of these motifs. We propose to distinguish between structure motifs (i.e., graphlets) in networks and process motifs (which we define as structured sets of walks) on networks and consider process motifs as building blocks of processes on networks. Using the steady-state covariances and steady-state correlations in a multivariate Ornstein--Uhlenbeck process on a network as examples, we demonstrate that the distinction between structure motifs and process motifs makes it possible to gain quantitative insights into mechanisms that contribute to important functions of dynamical systems on networks.
Social interactions are stratified in multiple contexts and are subject to complex temporal dynamics. The systematic study of these two features of social systems has started only very recently mainly thanks to the development of multiplex and time-varying networks. However, these two advancements have progressed almost in parallel with very little overlap. Thus, the interplay between multiplexity and the temporal nature of connectivity patterns is poorly understood. Here, we aim to tackle this limitation by introducing a time-varying model of multiplex networks. We are interested in characterizing how these two properties affect contagion processes. To this end, we study SIS epidemic models unfolding at comparable time-scale respect to the evolution of the multiplex network. We study both analytically and numerically the epidemic threshold as a function of the overlap between, and the features of, each layer. We found that, the overlap between layers significantly reduces the epidemic threshold especially when the temporal activation patterns of overlapping nodes are positively correlated. Furthermore, when the average connectivity across layers is very different, the contagion dynamics are driven by the features of the more densely connected layer. Here, the epidemic threshold is equivalent to that of a single layered graph and the impact of the disease, in the layer driving the contagion, is independent of the overlap. However, this is not the case in the other layers where the spreading dynamics are sharply influenced by it. The results presented provide another step towards the characterization of the properties of real networks and their effects on contagion phenomena
We study SIS epidemic spreading processes unfolding on a recent generalisation of the activity-driven modelling framework. In this model of time-varying networks each node is described by two variables: activity and attractiveness. The first, describes the propensity to form connections. The second, defines the propensity to attract them. We derive analytically the epidemic threshold considering the timescale driving the evolution of contacts and the contagion as comparable. The solutions are general and hold for any joint distribution of activity and attractiveness. The theoretical picture is confirmed via large-scale numerical simulations performed considering heterogeneous distributions and different correlations between the two variables. We find that heterogeneous distributions of attractiveness alter the contagion process. In particular, in case of uncorrelated and positive correlations between the two variables, heterogeneous attractiveness facilitates the spreading. On the contrary, negative correlations between activity and attractiveness hamper the spreading. The results presented contribute to the understanding of the dynamical properties of time-varying networks and their effects on contagion phenomena unfolding on their fabric.
We study the critical effect of an intermittent social distancing strategy on the propagation of epidemics in adaptive complex networks. We characterize the effect of our strategy in the framework of the susceptible-infected-recovered model. In our model, based on local information, a susceptible individual interrupts the contact with an infected individual with a probability $sigma$ and restores it after a fixed time $t_{b}$. We find that, depending on the network topology, in our social distancing strategy there exists a cutoff threshold $sigma_{c}$ beyond which the epidemic phase disappears. Our results are supported by a theoretical framework and extensive simulations of the model. Furthermore we show that this strategy is very efficient because it leads to a susceptible herd behavior that protects a large fraction of susceptibles individuals. We explain our results using percolation arguments.
This study is concerned with the dynamical behaviors of epidemic spreading over a two-layered interconnected network. Three models in different levels are proposed to describe cooperative spreading processes over the interconnected network, wherein the disease in one network can spread to the other. Theoretical analysis is provided for each model to reveal that the global epidemic threshold in the interconnected network is not larger than the epidemic thresholds for the two isolated layered networks. In particular, in an interconnected homogenous network, detailed theoretical analysis is presented, which allows quick and accurate calculations of the global epidemic threshold. Moreover, in an interconnected heterogeneous network with inter-layer correlation between node degrees, it is found that the inter-layer correlation coefficient has little impact on the epidemic threshold, but has significant impact on the total prevalence. Simulations further verify the analytical results, showing that cooperative epidemic processes promote the spreading of diseases.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا